Читать книгу «Open Longevity. Как устроено старение и что с этим делать» онлайн полностью📖 — Артема Благодатского — MyBook.
image

Старение внеклеточного матрикса

Организм человека устроен иерархически. Он состоит из органов, органы – из тканей, ткани – из клеток, клетки – из молекул.

Таково расхожее представление об устройстве тела. На самом же деле тканей, где клетки расположены, как кирпичики, у нас совсем немного: различные эпителии, слизистые оболочки и большинство желез. В остальных же тканях между «кирпичиками» есть довольно большое расстояние. Оно заполнено тем самым межклеточным матриксом.

Матрикс есть везде, но самое большое соотношение матрикс/клетки – в соединительных тканях. В среднем такие ткани только на 20 % состоят из клеток (по объему и весу) и на 80 % – из матрикса1. Это кожа, кости, хрящи, сухожилия, кровь и лимфа, радужная оболочка и склера глаз, а также фасции – «футляры» для мышц, органов, сосудов и нервов. Кроме того, иногда процессы, происходящие в матриксе, причастны и к выполнению основной функции органа: например, фильтрующие мембраны в почках «сделаны» именно из матрикса.

Матрикса в организме много. И если мы хотим разобраться в старении тела, необходимо также рассмотреть старение этой структуры.

Матрикс выполняет не только структурную функцию. Он постоянно контактирует с клетками через рецепторы-интегрины на их поверхности. Контакт клеток с матриксом критически важен: в случае его отсутствия клетка совершает запрограммированное самоубийство – апоптоз.

Благодаря регулярной структуре внеклеточный матрикс облегчает движение и миграцию клеток. Так, молодые и незрелые стволовые клетки при получении определенных сигналов из своего микроокружения открепляются от стволовой ниши и мигрируют к более зрелым товарищам, которых им предстоит заменить. По прибытии клетка определяет, где оказалась, и принимает решение о дифференцировке. На это влияют факторы роста – отдельные молекулы, находящиеся в сетчатой структуре матрикса. Они обеспечивают переход клетки в фазу деления, что позволяет ткани успешно регенерироваться[2].

В дальнейшем, говоря о межклеточном матриксе, мы часто будем приводить в качестве примера кожу. Основной слой кожи – дерма – прекрасный пример соединительной ткани, содержащей большое количество внеклеточного матрикса. С другой стороны, старение кожи близко каждому. С третьей – кожа очень удобно расположена, прямо на поверхности тела, что делает ее прекрасным модельным объектом для изучения старения.

Что же такое внеклеточный матрикс?

Это сетчатая структура между клетками, которая в основном состоит из длинных долгоживущих молекул и «наполнителя» между ними. Разберем подробнее все компоненты:

• Структурные белки (гликопротеины[3]: коллагеновые, эластические и ретикулярные волокна) – в матриксе их можно сравнить с пружинами в матрасе.

• Основное вещество (протеогликаны[4], гиалуроновая кислота и молекулы воды, которые они задерживают) – им заполнено пространство между структурными белками.

• Адгезивные гликопротеины (ламинин, фибриллин и фибронектин) – «клей» для строительных кирпичиков матрикса и клеток.

• Факторы роста – белки, переключающие режим клетки в фазу деления для регенерации.

• Ферменты (в частности, матричные металлопротеиназы) – белки, которые ускоряют все реакции, протекающие в клетках: и синтез новых веществ, и их расщепление. С их помощью клетка разрезает компоненты матрикса, чтобы продвигаться через «заросли пружин».

Основные клетки соединительных тканей – фибробласты. Они постоянно производят и выделяют в окружающее пространство молекулы матрикса, что обеспечивает его своевременное обновление. Фибробласты – фабрики по обновлению межклеточного матрикса, это их основная функция.

Впрочем, в отдельных тканях и органах основные клетки матрикса не всегда именно фибробласты. Внеклеточный матрикс, формируемый хондроцитами, – это хрящ; остеобластами – кость. А плазма – это межклеточный матрикс крови, хоть и жидкий.

Коллагеновые волокна

Коллаген – основной структурный белок матрикса. Его очень много: 25–33 % всех белков организма2, или 70–80 % белков дермы кожи.

Коллаген входит в состав хрящей, суставов, костей, волос, ногтей и даже глазных яблок. Он придает тканям эластичность и прочность. Это, как правило, длинная нитеподобная молекула, которая по-разному уложена в различных тканях: в коже коллаген образует трехмерную сеть из нитей, а вот в костях нити лежат параллельно, смещенные в шахматном порядке и плотно сжатые между собой.

Свое название коллаген получил от греческого слова κόλλα («клей»), поскольку именно для производства клея его использовали первое время, получая путем вываривания из хрящей и кожи лошадей.

В зависимости от степени минерализации, богатые коллагеном ткани могут быть очень жесткими, как кость, или более эластичными, как сухожилия. Часто ткани эластичны в начале жизни, однако постепенно минерализуются. Так, например, происходит с сердечными клапанами: коллаген в них с возрастом кальцифицируется, что приводит к снижению сердечной функции.

В настоящее время известно 28 типов коллагена. Они отличаются друг от друга аминокислотными последовательностями, степенью модификации (интенсивности гидроксилирования или гликозилирования) и тем, какого типа структуры они образуют.

Типы коллагена I, II, III, V, XI формируют длинные нити-фибриллы. Из IV типа получаются пленки, а из VII – якорные фибриллы. Остальные типы – короткие цепочки, фибриллы в форме спиралей, а также сетеобразующий и трансмембранный коллаген.

Более 90 % всего коллагена человека приходится на I, самый прочный из всех (рис. 1), II, III и IV типы[5].

В основе структуры коллагена – аминокислоты. Они сначала собираются в нити-фибриллы (они же микрофибриллы) диаметром 1,5 нм, длиной порядка 300 нм. Фибриллы при ближайшем рассмотрении представляют собой спирали из трех нитей: двух одинаковых (альфа пептид-1) и одной немного химически отличающейся (альфа пептид-2). Фибриллы, в свою очередь, образуют пучки – это и есть волокна коллагена.

Каждый тип коллагена организуется в свой тип коллагеновых волокон.

Рисунок 1. Структура коллагена I типа. Розовая линия – коллаген I-альфа-II, две голубые – коллаген I-альфа-I3


Каждая из трех цепей коллагенового волокна изначально синтезируется отдельно, с дополнительными аминокислотами на обоих концах, обеспечивающими ее растворимость. Затем три цепи собираются в одну спираль внутри фибробласта. На этом этапе спираль называется проколлагеном и пока еще растворима.

Затем фибробласт выделяет протоколлаген. Концы протоколлагена, отвечающие за растворимость, отрезают специальные ферменты: амино- и карбокситерминальные протоколлагеновые протеиназы. Удаление протеиназами еще нескольких аминокислот с концов приводит к получению коллагена, который затем организуется в протяженные волокна, формирующие трехмерную сеть с помощью специальных ферментов – лизилоксидаз4.

Ретикулярные (решетчатые) волокна

Это предшественники коллагеновых волокон, их незрелая форма. Они имеют более нежную структуру и сформированы из коллагена III типа.

Сеть ретикулярных волокон называют ретикулином. Это основа для некоторых мягкотканных органов (печень, костный мозг, лимфатическая система).

Эластические волокна

Секрет эластичности одноименных волокон – в белке эластине. Он тоже фибриллярный, как и коллаген. И его основная особенность, как несложно догадаться, – эластичность, но со временем это свойство меняется5. Эластин нерастворим, высоко стабилен и медленно метаболизируется. Большинство протеиназ неспособны его расщеплять. С этим справляется разве что эластаза, которую бактерии и клетки синтезируют в очагах воспаления.

Эластин легко разрушается под воздействием прямого солнечного излучения – этим и объясняются стремительное старение кожи и потеря ее упругости у людей, пренебрегающих солнцезащитными средствами.

Эластиновые волокна формируются аналогично коллагеновым: сначала в фибробластах собираются цепочки предшественника эластина – тропоэластина. Это пока еще растворимая молекула. Затем, уже снаружи, в матриксе, при помощи ферментов (трансглутаминаз и лизилоксидаз) образуются поперечные сшивки, стабилизирующие молекулу (здесь, правда, важна мера, ведь их избыток – один из факторов старения матрикса). После небольших модификаций (сшивок между окисленными остатками лизина в белке6) мы получаем прочную эластиновую сетку.

Затем аморфная сетка из эластина соединяется с фибриллином-1а[6]. В результате образуются эластиновые волокна толщиной 1–2 мкм (они состоят из эластина примерно на 90 %). Волокна разветвляются и соединяются друг с другом, образуя сеть7.

Эластиновые волокна эластичны, устойчивы к действию кислот и щелочей, не набухают в воде. Они способны поддерживать свою функцию на протяжении всей жизни. Однако различные ферменты, такие как матричные металлопротеиназы и сериновые протеазы, могут их расщеплять.

Если образование фибрилл коллагена происходит в течение всей жизни, то экспрессия тропоэластина у большинства млекопитающих начинается на поздних этапах жизни плода, достигает очень высоких уровней на неонатальных стадиях и снижается после рождения, а во взрослом возрасте полностью прекращается8. На этом основании было выдвинуто предположение, что продолжительность жизни человека не может быть длиннее срока жизни эластина, период полураспада которого составляет около 100 лет9, 10.

Основное вещество, или при чем здесь инъекции красоты?

Заполнитель матрикса – основное вещество – представляет собой большое количество небелковых молекул. Например, гликозаминогликанов (ГАГ)[7] – крупных молекул полисахаридов, создающих механическую поддержку клеткам, связывая воду и занимая пространство между эластическими и коллагеновыми волокнами.

Всего выделяют шесть типов ГАГ: дерматансульфат, гепарансульфат, гепарин, хондроитинсульфат, кератансульфат и гиалуроновую кислоту.

Количество всех ГАГ с возрастом снижается. Многие из них входят в состав БАДов с той или иной степенью доказанности эффективности, применяются для лечения возраст-зависимых заболеваний: например, хондроитинсульфат принимают в случае остеоартрита (стоит ли это делать – отдельный разговор).

Большинство ГАГ (за исключением гиалуроновой кислоты) формируют протеогликаны. Это сложные молекулы, по форме напоминающие ершик для мытья посуды, где ось – это белок, а вокруг множество «ворсинок»-ГАГ (белковая ось занимает всего 5–10 % общей массы молекулы, остальные 90–95 % – «ворсинки»).

Ершики-протеогликаны затем крепятся на нить гиалуроновой кислоты. В результате получается многоножка с ногами-ершиками.

Протеогликаны имеют выраженный отрицательный заряд, привлекающий положительно заряженные ионы натрия и калия. Они, в свою очередь, ведут за собой диполи молекул воды. Таким образом «ершики» удерживают в матриксе необходимое количество воды и ионов, а также могут захватывать и хранить сигнальные молекулы и факторы роста.

Протеогликаны покрывают поверхность клеток, играют важную роль в ионном обмене, иммунных реакциях, дифференцировке тканей.

Гепарансульфат

1
...
...
9