Читать книгу «Open Longevity. Как устроено старение и что с этим делать» онлайн полностью📖 — Артема Благодатского — MyBook.

Хелатирование

Еще одна стратегия борьбы с гликированием – использование хелатирующих агентов140.

Хелатирование – способность ряда органических соединений, в частности этилендиаминтетрауксусной кислоты (ЭДТА), нековалентно связывать ионы металлов, сжимая их, словно клешней.

Оказывается, инициаторами гликирования часто бывают реакции окисления, катализируемые ионами металлов. Хелатирующие агенты удаляют эти ионы из реакционной среды, тем самым замедляя процесс образования поперечных сшивок матрикса.

ЭДТА уже давно используют141 в качестве терапевтического средства для борьбы с диабетическим поражением сосудов, состояние которых, как мы помним, во многом определяется состоянием внеклеточного матрикса.

Компания Alteon (ныне объединена с компанией Synvista Therapeutics, США) создала первое лекарство против различных сшивок в межклеточном матриксе – Алагебриум. Оно способно разрезать сшивки, образованные с участием α-дикетона. Однако лекарство не имело большого успеха, потому что таких сшивок в матриксе оказалось немного. И основная проблема повышения жесткости матрикса не была решена.

Кое-что еще

Совсем недавно появилась статья, в которой предлагается использовать 4-фенилбутират натрия в качестве агента против гликирования142.

Механизм его действия точно неизвестен. Предполагается, что он может связываться с альбумином и предотвращать его взаимодействие с глюкозой, а это и есть начальный этап гликирования.

Так, 4-фенилбутират натрия становится потенциальным участником борьбы с нейродегенеративными заболеваниями, атеросклерозом, диабетом, гиперлипидемией и другими возраст-зависимыми заболеваниями.

Убираем лишний матрикс

Вторая очень актуальная проблема – накопление соединительной ткани и внеклеточного матрикса там, где должна быть другая функциональная ткань. Например, изменение с возрастом состава и структуры мышечной ткани. Это происходит из-за снижения активности металлопротеиназ, необходимых для ремоделирования межклеточного матрикса. В конечном счете разрастание и утолщение межклеточной массы приводит к снижению упругости и развиваемой силы мышц.

Хорошая новость в том, что в организме существуют механизмы, позволяющие обратить этот процесс вспять. С возрастом меняется не только состояние мышечной ткани, но и характер ее ответа на повреждения. В ряде экспериментов на грызунах было показано, что у старых мышей в ответ на повреждения мышц активнее, чем у молодых, возрастает концентрация металлопротеиназ, в результате чего значительно снижается количество коллагеновых отложений в поврежденной мышце143.

Кроме того, было показано, что этот эффект наблюдается вследствие выработки мышечными клетками в ответ на повреждения трансформирующего ростового фактора TGF-β. Есть все основания полагать, что в будущем этот механизм удастся использовать для воздействия на мышцы пожилых людей, повышая их силу и упругость.

Подведем итоги

Внеклеточный матрикс – динамический внеклеточный компонент организма, который постоянно изменяется в ответ на различные стимулы. Он подвержен существенным трансформациям в ходе старения организма. Его компоненты регулируют различные процессы, включая пролиферацию, выживание, дифференцировку и миграцию клеток.

Внеклеточный матрикс состоит из множества белков. Самые распространенные из них – коллаген и эластин. Они долгоживущие и, как следствие, особенно чувствительны к накоплению неферментативных модификаций и разрушению в результате ферментативного расщепления.

По современным представлениям, большинство продуктов посттрансляционных модификаций матричных белков в итоге превращаются в КПГ. Но остается еще много неясного о самом характере изменений, происходящих в матриксе. Например, продукт карбамилирования белков матрикса, гомоцитруллин, также часто встречается в стареющем матриксе и вносит свой вклад в изменение его функций67. По мнению некоторых ученых, этот процесс может быть таким же весомым, как и гликирование67.

Изменения белков матрикса в процессе старения очень сильно влияют на его функции, воздействуя на другие биологически активные молекулы. Так, активация сигнальных каскадов после взаимодействия КПГ с рецепторами RAGE приводит к многочисленным нарушениям функционирования клеток, в том числе к воспалительным и окислительным процессам с формированием порочных кругов.

Все эти изменения в старом внеклеточном матриксе могут напрямую влиять на его механическую и структурную роль. Запускаются такие процессы, как истощение пула стволовых клеток, клеточное старение, нарушение межклеточной коммуникации, возникают геномная нестабильность и дисфункция митохондрий.

Кроме того, возрастная дисфункция матрикса напрямую связана с такими патологиями, как нарушение целостности кишечного и гематоэнцефалического барьеров, фиброз, сердечно-сосудистые и нейродегенеративные заболевания. Предполагается, что старение внеклеточного матрикса может быть даже более важным, чем старение самих клеток, так как внутри клетки, в отличие от матрикса, существуют более эффективные механизмы восстановления и удаления поврежденных белков и органелл.

Состояние внеклеточного матрикса можно считать биомаркером старения. Образование в нем сшивок и КПГ – признак того, что возраст наступает на пятки. Хотя на данный момент маркеры старения широко не используются, КПГ (глюкозепан и др.) довольно перспективны с точки зрения оценки возрастного состояния организма. Созданное недавно командой Дэвида Шпигеля (David Spiegel) антитело, связывающееся с глюкозепаном, представляет собой еще один инструмент идентификации в организме КПГ139.

Какие пути противодействия негативным последствиям старения матрикса предлагают ученые? На сегодняшний день их несколько. Это, например, разработка комбинации ингибиторов41 КПГ, которые синергетически работают на разных стадиях их образования. Сюда могут входить:

– соединения с трансгликирующей активностью – амадорины134 и амадориазы131;

– хелаторы140, 141 (препараты по связыванию избытка ионов металлов);

– соединения, содержащие О-ацетильную группу для защиты белков от гликирования136, 137, 138.

Также необходимо сфокусироваться на разработке разрушителей основного КПГ в внеклеточном матриксе – глюкозепана. Идеально было бы синтезировать небольшую молекулу или фермент, способные проникать между фибриллами коллагена и достигать своей цели – сшивок КПГ.

Конец ознакомительного фрагмента.

1
...