Читать книгу «Open Longevity. Как устроено старение и что с этим делать» онлайн полностью📖 — Артема Благодатского — MyBook.
image

Гиалуроновая кислота

Гиалуроновая кислота (или гиалуронан) – один из самых важных небелковых компонентов внеклеточного матрикса.

С химической точки зрения это полимер, состоящий из остатков D-глюкуроновой кислоты и D-N-ацетилглюкозамина.

Это уникальный ГАГ. Он не сульфированный и не образует протеогликанов, тем не менее обладает свойствами, характерными для остальных представителей группы.

Гиалуроновая кислота стабилизирует структуру коллагеновых волокон16, участвует во взаимодействии и миграции клеток и играет важную роль в регенерации тканей.

Самое примечательное свойство гиалуроновой кислоты – сохранение влаги: одна молекула гиалуронана способна захватить и удержать вокруг себя 500 молекул воды. В дальнейшем эта жидкость используется для увлажнения, клеточных взаимодействий или для создания объема ткани.

Именно последним свойством пользуются косметологи при инъекциях гиалуроновой кислоты, например, в губы. Гелеобразная субстанция, содержащая гиалуронан, будет «раздуваться» при любом увлажнении и поддерживать свой объем достаточно долго, чем и объясняется эффект подобных процедур.

Помимо того, что «гиалуронка» входит в состав внеклеточного матрикса, она – основной компонент слюны и синовиальной жидкости (которая служит биологической «смазкой» нашим суставам) и содержится в других биологических смазках, например между связками мышц17.

Синтезируется гиалуронан в коже преимущественно фибробластами дермы и обновляется довольно быстро – примерно треть всей гиалуроновой кислоты за день. Процесс происходит на внутренней поверхности мембраны фибробласта, в синтезе участвуют специальные ферменты – гиалуроновая синтаза трех видов (HAS-1, HAS-2 и HAS-3). После синтеза гиалуронан выбрасывается наружу18.

Гиалуроновая кислота способствует заживлению механических ран. Но при фотоповреждении возникает обратная ситуация: клетки перестают синтезировать гиалуроновую кислоту, вероятно, даже повышается синтез разрушающих ее ферментов. В итоге длинные молекулы гиалуронана разрываются, становятся более короткими и подают сигнал опасности, который стимулирует локальное воспаление, а затем и восстановление ткани19.

Любопытно, что экстремальное долгожительство и устойчивость к онкологическим заболеваниям голых землекопов – животных, которые стали популярным объектом для изучения механизмов старения, – объясняются высоким содержанием и особыми свойствами гиалуроновой кислоты в их коже. Крупные молекулы гиалуроновой кислоты голого землекопа подавляют воспаление и клеточное деление, препятствуя развитию онкологических заболеваний20.

Гиалуронидаза

В связи с упоминанием о гиалуроновой кислоте расскажем об одном связанном с ней интересном факте. Как бы ни был полезен для организма гиалуронан, его избыток связан с развитием некоторых патологий, к примеру фиброза и склероза.

Для регуляции уровней содержания гиалуроновой кислоты и других веществ внеклеточного матрикса (мукополисахаридов) существует специальный разрушающий их фермент – гиалуронидаза. Она повышает проницаемость тканей, облегчая тем самым циркуляцию жидкостей в межтканевых пространствах и способствуя замедлению и предотвращению патологического роста соединительной ткани[8].

В живой природе существует множество видов этого фермента.

Гиалуронидаза может участвовать и в патологических процессах, связанных с инфекциями. Дело в том, что бактерии взяли на вооружение главное свойство гиалуронидазы – прореживание соединительной ткани – и используют его для повышения собственной патогенности (то есть способности заражать организм).

Гиалуронидаза бактерий, которую они впрыскивают в клетки человека и животных при попадании внутрь, расщепляет гиалуроновую кислоту и другие мукополисахариды кожи, подкожной и межмышечной клетчатки. Это позволяет патогенам убирать на своем пути препятствия и проникать в глубоко лежащие ткани.

Среди бактерий, имеющих на вооружении фермент гиалуронидазу, можно перечислить: клостридий (имеют еще один расщепляющий матрикс фермент – коллагеназу, вызывают столбняк, ботулизм, злокачественный отек и многие другие болезни), стафилококков (имеют еще один расщепляющий фермент – фибринолизин), возбудителей чумы Yersinia pestis (также имеют фибринолизин), дифтерийную палочку Corynebacterium diphtheriae (имеет еще один расщепляющий фермент – нейраминидазу), стрептококков (имеют целый ряд расщепляющих ферментов – протеазы, липазы, эстеразы, дезоксирибонуклеазы) и других.

Кроме бактерий, гиалуронидазу синтезируют скорпионы и змеи в составе ядов, а также пиявки.

Обновление матрикса

Компоненты матрикса постоянно обновляются: старые расщепляются матриксными металлопротеиназами, а новые синтезируются специализированными клетками (например, фибробластами и хондроцитами). Интенсивнее всего такой синтез происходит после повреждений и ожогов.

Некоторые компоненты матрикса обновляются быстро, другие, например коллаген и эластин, – поразительные долгожители. Период полураспада коллагена в межпозвоночных дисках составляет целых 95 лет21! Логично, что он претерпевает различные химические изменения и со временем накапливает повреждения.

Остановимся на металлопротеиназах. Они разрушают белки матрикса, тем самым позволяя ему обновляться и перестраиваться. В каталитический центр этих ферментов входит металл (отсюда и название), чаще всего это цинк, реже – кобальт. Как и другие ферменты, они подразделяются на две группы: экзопептидазы (отщепляют аминокислоты от конца белка) и эндопептидазы (расщепляют белок внутри пептидной цепи).

Металлопротеиназы, к примеру, помогают разрушать матрикс, чтобы проложить сквозь него новые кровеносные сосуды, то есть участвуют в процессе ангиогенеза.

Регулирует работу матриксных металлопротеиназ белок катепсин С[9] (относится к протеиназам)22. Он отщепляет небольшой фрагмент от протеиназ-мишеней и переводит их из неактивного состояния в активное. В частности, катепсин С выделяется клетками иммунной системы23, и его роль значительна при развитии воспалительной реакции, поскольку необходимо активировать матриксные металлопротеиназы для устранения и обновления межклеточного вещества в воспаленной ткани.

На данный момент известно, что основную роль в процессе репарации дермы играют фибробласты. Интересны работы по стимулированию фибробластов для выработки коллагена. Они могут помочь не только в разработке препаратов для заживления ран, но и при реставрации стареющих тканей за счет синтеза новых компонентов межклеточного матрикса.

Экспериментально было показано, что фактор роста фибробластов-1 стимулирует развитие собственной ткани организма и помогает ранам эффективно закрыться (тем самым блокируя инфекцию и уменьшая образование рубцов). Использование фактора роста фибробластов – более эффективный способ заживления ткани, чем применение существующих тканевых герметиков[10], так как в результате его применения образуется очень прочный коллаген типа I25.

Общение матрикса с клеткой

Здесь важно сказать о селектинах – гликопротеинах, пронизывающих мембрану клетки и участвующих в связывании клетки с матриксом и другими клетками. По своей природе они относятся к семейству лектинов – белков, прочно и специфично связывающихся с остатками углеводов, что необходимо для узнавания клетками друг друга. Важно помнить, что селектины, как и другие лектины, участвуют не только в связывании клеток, но и во внутриклеточной сигнализации.

Они также играют роль в привлечении и миграции лейкоцитов в места воспаления. Это делает селектины незаменимыми для формирования иммунного ответа. Почему это важно, расскажем немного позднее.

Активация селектинов иногда происходит при развитии патологических процессов, например при атеросклерозе, тромбозе глубоких вен и запуске метастазирования у опухолей. Значит, в некоторых случаях искусственная блокировка селектинов может облегчить течение заболевания27.

Связь старения и матрикса

Изменение матрикса с возрастом

С возрастом матрикс теряет эластичность, становится более жестким. Также жесткости способствует образование избыточных поперечных сшивок между волокнами коллагена и эластина. Вернемся к нашему любимому образцу матрикса – коже: все это хорошо заметно и проявляется в виде морщин и потери упругости.

Повышение жесткости матрикса связывают с развитием ряда возрастных заболеваний: утолщения стенок сосудов и увеличения их жесткости28, изменений в тканях сердца29, онкологических30 и нейродегенеративных заболеваний31.

На молекулярном уровне жесткость нарушает общение матрикса с клетками, сбивает работу иммунной системы, способствует хроническому воспалению.

Разберем все эти процессы немного подробнее.

Потеря эластичности

Эластичность тканей очень важна для работы органов кровеносной, дыхательной и некоторых других систем. В первую очередь от эластических волокон зависит упругость стенок кровеносных сосудов и в итоге – кровяное давление во всем организме.

Необратимое разрушение волокон со временем запускает и другие процессы старения, например воспаление. Дальше запускаются хорошо нам знакомые «порочные круги».

Разрушение эластических волокон также приводит к высвобождению биоактивных пептидов – фрагментов эластина, так называемых эластокинов, играющих активную роль в разных физиологических процессах, включая клеточную адгезию, хемотаксис, миграцию и пролиферацию клеток, активацию протеаз и апоптоз32. Выделение эластокинов – одна из основных причин запуска «порочных кругов» воспаления, генерации активных форм кислорода (АФК), чрезмерной экспрессии разрушающих матрикс протеаз и прочих патологических процессов.

Рассмотрим основные факторы снижения эластичности матрикса и основные патологические последствия старения эластических волокон (рис. 2).

Во-первых, это внешние небиологические факторы: ультрафиолет, активные формы кислорода (АФК), табак и другие33, 34, 35, 36, 37.

Во-вторых, активность ферментов, отвечающих за образование поперечных сшивок волокон: когда их становится слишком много, жесткость ткани повышается, а эластичность – снижается.

Третий фактор – неферментативные повреждения, возникающие в ходе химических реакций: гликирования, окисления, кальцификации и т. д. Также к неферментативным повреждениям стоит отнести механический износ волокон и карбамилирование. Наличие старых, изношенных волокон в ткани неизбежно ведет к потере их эластичности и многочисленным патологиям кровеносной и дыхательной систем, таким как гипертоническая болезнь и эмфизема легких.

Таким образом, здоровый образ жизни не может полностью предотвратить внутренние процессы старения эластина. Они связаны с модификацией эластиновых волокон липидами, а также их кальцификацией и ферментативной деградацией. Липиды, кальций и углеводы – часть рациона человека, и эластин накапливает все больше и больше повреждений с возрастом. В итоге продолжительность жизни человека ограничена сроком сохранения эластических свойств кровеносной и дыхательной систем, что примерно составляет 100–120 лет9.

Рисунок 2.1. Внешние и внутренние факторы, влияющие на эластичность матрикса при старении. Патологические последствия старения эластических волокон5. (1) карбамилирование; (2) механическая усталость; (3) цистеиновые протеазы; (4) курение; (5) гликирование; (6) сериновые протеазы; (7) рацемизация аспарагиновой кислоты; (8) кальцификация; (9) активные формы кислорода; (10) матриксные металлопротеазы; (11) УФ-излучение; (12) загрязнение воздуха; (13) окислительное повреждение


Рисунок 2.2. Патологические последствия старения эластических волокон


Механическая связь с клеткой

Свойства матрикса сильно влияют на функционирование связанных с ним клеток, в частности на их развитие и дифференцировку. Клетки «чувствуют» степень жесткости матрикса при помощи различных механорецепторов: силы натяжения, сжатия и сдвига переводятся в биохимические сигналы. Этот процесс известен как механотрансдукция[11].

Растущая с возрастом жесткость матрикса и изменения в его структуре влияют на работу клеток, их способность к адгезии, снижение подвижности и другие аспекты их поведения41. Более того, повышение жесткости матрикса приводит к высвобождению клетками факторов роста, стимулирующих синтез компонентов матрикса и еще сильнее ее увеличивающих42 (рис. 3).

Многочисленные данные подтверждают, что клетки активно перестраивают окружающий их матрикс для поддержания оптимального уровня его жесткости43.


Рисунок 3. Механизмы повышения жесткости внеклеточного матрикса, силы механического натяжения и биохимические изменения, возникающие в ответ на возрастание жесткости матрикса


1
...
...
9