Читать книгу «Экология» онлайн полностью📖 — А. Т. Федорука — MyBook.

Раздел I
Аутэкология, или экология организмов

В 1896 г. для обозначения экологии организмов швейцарским ботаником К. Шрётером вводится термин аутэкология (от греч. autos – сам и экология). На III Международном ботаническом конгрессе (1910) аутэкология была выделена в самостоятельный раздел экологии, изучающий взаимоотношения организмов со средой, их реакции на воздействия среды. Экологические исследования быстро развивающейся науки были направлены на изучение сред, выявление влияния факторов среды на морфологические особенности, распространение, численность особей животных и растений. Итогом исследований явился огромный фактический материал о жизни особей в их взаимосвязях со средой, который послужил основой для развития других разделов экологии.

Глава 1
Организм и среда

Среди многочисленных объектов биологии особи (организму, индивидууму) принадлежит центральное место. Семьи, популяции, биоценозы взаимодействуют со средой и друг с другом только через организмы (особи). В определении В.В. Хлебовича (2002) особь есть фенотипическое проявление уникального генома, самостоятельно (автономно) устанавливающее отношения с внешней средой. Это морфофизиологическая целостная единица жизни, на которую воздействуют экологические факторы.

В первой половине XIX в. в естествознании еще господствовала концепция «организм вне среды», хотя многие ботаники и зоологи уже понимали, что растения и животные связаны со средой и находятся под постоянным ее влиянием. В 1850 г. К. Рулье, «русский предшественник Дарвина», сформулировал «закон общения животного с миром», а в 1861 г. физиолог И.М. Сеченов (1829–1905) указал, что «организм без внешней среды, поддерживающей его существование, невозможен». Биологический закон единства организма со средой называется законом Рулье – Сеченова.

В.С. Ипатов и Л.А. Кирикова (1997) определяют среду как «совокупность всех тел и веществ, потоков энергии, полей (электрического, магнитного, гравитационного), окружающих живые организмы и взаимодействующих с последними прямо или косвенно, постоянно или временно». Организм и среда представляют собой диалектическое единство, определяемое обменом веществ, в основе которого лежат противоречивые, но взаимосвязанные процессы ассимиляции и диссимиляции. Понятия «организм» и «среда» неравноправны. Как метко заметил В.П. Щербаков, среда хаотична – организм упорядочен и высокоорганизован; организм созидает – среда деструктивна; организм живет – среда мертва. В структурном, термодинамическом и информационном отношении организм неизмеримо выше среды. Организм есть сущее, а среда – условия, в которых организм существует.

1.1. Среды жизни

Организмы освоили четыре среды жизни, существенно различающиеся по специфике физико-химических условий: водную, наземно-воздушную, почву, живые организмы.

Водная среда является первой, самой древней и наиболее обширной средой жизни, занимает до 71 % площади земного шара. Жизнь в ней стала возможной задолго до образования озонового экрана и распространилась по всей ее толще до максимальных глубин (11 000 м). Водная среда более однородна, чем суша, и по разнообразию форм значительно уступает наземно-воздушной среде. В водной среде обитает около 150 000 видов животных и 10 000 видов растений.

Моря и океаны в отличие от суши не имеют физических барьеров. Они связаны между собой, что определяет широкие возможности свободного передвижения животных. Вода обладает рядом уникальных термодинамических свойств, связанных с малыми размерами молекулы, ее полярностью и наличием водородных связей (рис. 1). Она имеет особую молекулярную структуру, которая, изменяясь, способна противостоять любым внешним воздействиям – тепловым, механическим, электрическим, чем определяется своеобразие водной среды. Для воды характерна самая высокая среди жидкостей удельная теплоемкость (на нагревание 1 мл воды на 1 °C расходуется 1 кал тепла) – в 4 раза большая, чем удельная теплоемкость воздуха, что позволяет водоемам аккумулировать тепло, становиться своеобразными термостатами. Воды Мирового океана поглощают солнечной энергии почти в 2 раза больше, чем суша. Количество тепла, аккумулированного в водоемах, примерно в 21 раз превосходит годовую норму тепла, поступающего от Солнца к Земле.

Рис. 1. Молекулярная структура воды (по П. Кемпу и К. Армсу, 1980): а — молекула воды: один атом кислорода ковалентно связан с двумя молекулами водорода; б — водородные связи между молекулами воды: светлые кружки – атомы кислорода, темные кружки – атомы водорода


Благодаря высокой скрытой теплоте парообразования (при испарении 1 г воды поглощается 536 кал) водоемы не перегреваются. Они медленно нагреваются, а отдавая тепло, также медленно остывают, чем в значительной степени ослабляются годовые, суточные и даже часовые колебания их температурных режимов. Эти колебания менее резкие, чем соответствующие изменения температуры на суше. При замерзании вода уменьшает свою плотность (лед легче воды, его плотность меньше единицы), что предохраняет водоемы от сплошного промерзания, так как их поверхность покрывается льдом. Процесс замерзания сопровождается выделением значительного количества тепла, которое замедляет образование ледяного покрова.

Вода практически несжимаема. Ее состояние на дне океана мало чем отличается от состояния в поверхностных слоях. Наибольшей плотностью вода обладает при температуре 4 °C, чем обеспечивается процесс перемешивания и замерзания водных масс. Из всех жидкостей она имеет самое большое поверхностное натяжение. Благодаря силам когезии вода легко передвигается по сосудам, а мелкие организмы удерживаются или легко скользят по ее поверхности. Чем больше поверхностное натяжение, тем больше общее содержание жидкости в капиллярной системе. Вода обладает слабой испаряемостью и универсальной растеорительной способностью, в биосфере никогда не бывает химически чистой.

Специфику водной среды составляют подвижность воды, большая плотность, свет, малое содержание кислорода, температурный режим, соленость, наличие взвешенных частиц.

Подвижностью достигается перемешивание вод, выравнивание температурного режима, обеспечение гидробионтов кислородом и питательными веществами, а также в некоторой степени возможность их перемещения. По плотности вода примерно в 800 раз превосходит воздушную среду, а давление на каждые 10 м глубины возрастает на 1 атм, достигая в придонных слоях глубоководных водоемов до 1000 атм. Давление в 400–500 атм переносят головоногие моллюски, морские звезды, ракообразные и многие другие гидробионты. Плотность воды позволяет растениям со слабым развитием механической ткани и бесскелетным формам животных находиться во взвешенном состоянии, парить в воде, опираясь на ее толщу.

Лимитирующим фактором, ограничивающим распространение растений в водной толще, является свет. По мере поглощения света водой (красные лучи поглощаются у самой поверхности, а наиболее глубоко проникают сине-зеленые лучи) уменьшается световое довольствие и на глубине примерно 200 м в чистых водоемах заканчивается освещенная, или эуфотическая, зона – зона фотосинтеза (рис. 2). Глубины до 1000–1500 м занимает сумеречная, или дисфотическая, зона, а еще глубже темная, или афотическая, зона (полный мрак). При недостатке света зеленые водоросли с глубиной сменяются бурыми, содержащими кроме хлорофилла бурые пигменты фикофеин и фукоксантин, а бурые водоросли – красными, имеющими наряду с хлорофиллами а и в, каротинами, ксантофиллами специфические пигменты – красный фикоэритрин и синий фикоцианин. В зависимости от степени освещенности и спектрального состава света у водорослей меняется состав, количество пигментов и соответственно окраска. Даже при засушивании красных водорослей при недостатке света они приобретают более интенсивную окраску. Такое приспособление носит название хроматической адаптации.


Рис. 2. Примерная схема вертикальной и горизонтальной зональности моря (по X. Хилю, 1988)


Для животных, низших растений, бактерий, живущих в темной толще воды, характерно явление свечения – биолюминесценции. Генерация света происходит в результате окисления сложных органических соединений (люциферинов) с помощью белковых катализаторов (люцифераз).

Биолюминесценция характерна видам почти всех классов водных животных. В жизни животных свечение имеет сигнальное значение (ориентация в стае, привлечение особей другого пола, отвлечение), служит защитой от хищника (ослепляет его).

Освещенность водоемов зависит от количества взвешенных минеральных и органических частиц, а также от сезона года. Наиболее прозрачными считаются воды Саргассова моря (диск Секки виден до глубины 66,5 м, свет проникает на глубину до 1000 м), а прозрачность вод рек в среднем 1–1,5 м. Однако толщина слоя воды, в котором возможен фотосинтез, оказывается значительно меньше. Оптимальными для фотосинтеза являются глубины, куда доходит примерно треть солнечного света. От этой глубины интенсивность образования органических веществ в соответствии с убыванием освещенности постепенно снижается и становится минимальной на глубине, куда проникает около 1 % света. В тропических морях такая освещенность наблюдается на глубинах 40–50 м, в Балтийском море – 1—17 м. В лагунах и заливах минимальная освещенность фиксируется всего в нескольких дециметрах от поверхности воды.

Жизнь гидробионтов в воде осложняется небольшим содержанием кислорода (до 10 мл в 1 л). В атмосфере его в 21 раз больше. Основными источниками кислорода в воде являются фотосинтез и диффузия из воздуха. Диффундирует кислород очень медленно. Его молекула достигает в чистой воде глубины Юм через 11 лет, концентрация в соответствии с понижением температуры от экватора к полюсам повышается, по средним широтным данным, от 4,5–5,0 мл/л в низких широтах до 6,0–7,0 мл/л в Антарктике и до 7,5–8,0 мл/л в Арктике. Предельный минимум – 4 мл/л. Концентрация кислорода в водоемах уменьшается с глубиной, с повышением температуры, солености воды и при замерзании, что ведет к летним и зимним заморам гидробионтов. Недостатка в углекислом газе фотосинтезирующие растения не испытывают. Его в воде почти в 60 раз больше, чем в атмосфере. Содержание углекислоты, постепенно увеличиваясь с глубиной, достигает максимальных значений в придонном слое полярных областей.

Водная среда в отличие от среды наземно-воздушной характеризуется сравнительно устойчивым температурным режимом. Среднегодовая температура поверхностных слоев экваториальных вод составляет 26–27 °C, полярных вод – около 0 °C и ниже. С глубиной температура воды в океанах постепенно падает и на глубине 1000 м не превышает 4–5 °C, а на больших глубинах – относительно постоянная, колеблется от —1,8 до +2 °C. Зона между верхними слоями воды с выраженными в них сезонными колебаниями температуры и нижними слоями воды с постоянным тепловым режимом называется термоклином. Термоклин наиболее выражен в теплых морях.

Особую роль в жизни гидробионтов играет соленость воды, определяемая содержанием карбонатов, сульфатов, хлоридов и др. Количество растворенных солей в 1 л воды пресноводных водоемов не превышает 0,5 г, в морях и океанах содержится до 35 г. Так как пресноводным организмам с высоким содержанием солей (они гипертоничны по отношению к среде) и наличием проницаемых мембран постоянно угрожает излишнее обводнение в результате насасывания (рис. 3), они не потребляют воду и имеют хорошо развитую выделительную систему. Гидробионты соленых водоемов гипотоничны по отношению к водной среде. Ввиду высокого содержания солей в водной среде они, во избежание обезвоживания путем оттока воды, вынуждены постоянно пить соленую воду. По причине этих биологических особенностей пресноводные виды не могут жить в морях, а морские – не переносят опреснения. По комплексу показателей вода является уникальной средой, пригодной для жизни любых форм организмов.


Рис. 3. Осморегуляция у пресноводных (а) и морских (б) костистых рыб (из Ю. Одума, 1975)


Наземно-воздушная среда включает часть атмосферы и поверхность земли, которая служит местом прикрепления, размножения растений и животных. Воздух в отличие от воды не может обеспечить организму твердой опоры, в связи с чем наземные организмы обладают собственной опорной системой (механические ткани у растений, скелеты у животных). Опорой и одновременно источником воды и минеральных веществ для наземных растений служит почва. Малая плотность воздуха определяет его малую подъемную силу. Воздух оказывает слабое сопротивление передвижению организмов по земле, благоприятствует полету в воздухе, но затрудняет подъем по вертикали. С высотой давление воздуха понижается, обеспеченность кислородом уменьшается, что ведет к учащению дыхания у животных и их обезвоживанию. Для большинства животных высота около 6000 м составляет верхнюю границу жизни.

Среда неоднородна по горизонтали и вертикали и в отличие от океана прерывна. Постоянными физическими барьерами служат горы, реки, пустыни. Специфические особенности состоят в хорошей обеспеченности светом, постоянстве и высоком содержании кислорода (до 21 %), азота (78,1 %) и других газов, постоянном движении воздушных масс (ветер, бури, ураганы), характере осадков (ливневые или моросящие дожди, снег), а также в значительных колебаниях температурного режима. Количество тепла, как и количество выпадающих осадков, зависит от широты местности, сезона года и даже времени суток. Влажность в наземно-воздушной среде в отличие от водной сама по себе выступает важным лимитирующим фактором. С постоянными потерями воды, которые происходят при транспирации и испарении, связаны процессы миграции вещества и рассеяния энергии.

Характер распределения солнечной энергии по широте и высоте, а также неравномерность увлажнения (на суше) определяют явление географической зональности и вертикальной поясности. Годовая температура понижается при движении с юга на север на каждые 100 км (или 1° широты) на 0,5 °C, а с поднятием в горы – на 0,6 °C на каждые 100 м. Зональный характер носят основные природные процессы: климатические, гидрологические, геохимические, эдафические, геоморфологические, биогеографические и др. Закономерности и количественные характеристики природных процессов по профилю через основные природные зоны Восточной Европы отражает схема (рис. 4).

Географическая зональность представляет собой одну из важнейших природных закономерностей. Явление зональности было известно А. Гумбольдту, некоторым русским географам, но только В.В. Докучаеву предстояло в 1899 г. сказать обобщающие слова: «Вода, земля, огонь (тепло и свет), воздух, а равно растительный и животный мир, благодаря астрономическому положению, форме и вращению нашей планеты вокруг оси, несут на своем общем характере резкие и неизгладимые черты закона мировой зональности».


Рис. 4. Схема изменений климата, растительности и почв вдоль профиля через основные природные зоны Восточной Европы с северо-запада на юго-восток до Прикаспийской низменности. Черным показан гумусовый горизонт, штриховой линией – иллювиальный горизонт (из В. Лархера, 1978)