Под соединением треугольником (рис. 6а) понимается такое, при котором вывод К1 одного из элементов соединяется с выводом Н2 второго, вывод К2 второго – с выводом Н3 третьего, а вывод К3 третьего – с выводом Н1 первого элемента. Узловые точки a, b и c подключаются к остальной части электрической цепи.
Рис. 6. Схема соединения резистивных элементов треугольником (а) и звездой (б)
Для упрощения анализа и расчета некоторых электрических цепей, содержащих соединения резистивных элементов треугольником, целесообразно заменить их эквивалентными резистивными элементами, соединенными звездой (рис. 6б). Примером подобных электрических цепей являются мостовые цепи (рис. 7а). Как видно, в мостовой цепи резистивные элементы образуют два смежных треугольника (rab, rbc, rca и rbc, rbd, rdc) и нет ни одного элемента, который был бы соединен с другими последовательно или параллельно. Это осложняет расчет и анализ электрической цепи. Если заменить, например, резистивные элементы rab, rbc и rca, соединенные треугольником, эквивалентными элементами ra, rb и rc, соединенными звездой (рис. 7б), получим цепь со смешанным соединением резистивных элементов.
Рис. 7. Схема мостовой цепи (а) и соответствующая ей схема после замены одного из треугольников звездой (б)
Замена треугольника резистивных элементов эквивалентной звездой должна производиться таким образом, чтобы после указанной замены токи в остальной части цепи, а также напряжения между точками ab, bc и ca остались без изменения.
С помощью законов Кирхгофа можно получить следующие формулы для определения сопротивлений эквивалентной звезды:
Иногда оказывается целесообразным заменить резистивные элементы, соединенные звездой, эквивалентным треугольником. Соответствующие формулы можно получить путем совместного решения выражений (1).
При расчете и анализе электрических цепей используют источники электрической энергии с параметрами E и r0, т. е. источники ЭДС, либо источники с указанными напряжениями. Иногда оказывается целесообразным заменить источник ЭДС эквивалентным ему источником тока, параметрами которого являются неизменные по значению ток короткого замыкания Ik и сопротивление r0. Рассмотрим источник тока на примере электрической цепи (см. рис. 8), в которой источник ЭДС заменим эквивалентным источником тока.
Рис. 8. Электрическая цепь
Источник тока следует считать эквивалентным в том случае, если после замены им источника ЭДС значения тока I, напряжения U и отдаваемой источником мощности UI при различных значениях сопротивления r внешней цепи остаются без изменения. Это условие будет выполнено, если источник тока будет иметь такую же внешнюю характеристику, какую имеет источник ЭДС.
Воспользуемся указанным соображением для обоснования структуры электрической цепи источника тока. Разделив левую и правую части уравнения внешней характеристики источника ЭДС на сопротивление r0, получим
где
– ток короткого замыкания источника ЭДС, являющийся вместе с тем одним из параметров источника тока;
– некоторый ток, определяемый как частное от деления U на r0.
Решив (1) относительно
или Ik = I0 + I. (2)
Так как токи I0 и I определяются путем деления одного и того же напряжения U на соответствующие сопротивления, то в электрической цепи с источником тока должны быть две ветви с соединенными параллельно резистивными элементами r0 и r. Согласно (2) параллельно указанным ветвям должна быть включена третья ветвь, содержащая элемент с током Ik.
Рис. 9. Схема электрической цепи
Схема электрической цепи, эквивалентная приведенной на рисунке 8, но содержащая источник тока, дана на рисунке 9а. Элемент с током I в совокупности с резистором r0 и представляет собой источник тока:
Получили уравнение внешней характеристики
I(U) источника тока. Уравнение (3) и внешняя характеристика, построенная с помощью этого уравнения (рис. 9б), дадут при любом режиме работы цепи такие же значения тока I и напряжения U, как и в случае источника ЭДС.
Покажем на схеме положительные направления известных и неизвестных величин. Сначала следует составить более простые уравнения по первому закону Кирхгофа, максимальное число которых должно быть на единицу меньше числа узловых точек. Недостающие уравнения следует составить по второму закону Кирхгофа.
В качестве примера составим схему уравнений для определения токов в электрической цепи, схема которой изображена на рисунке 10. Будем считать, что ЭДС и напряжения с их направлениями, а также сопротивления известны. Поскольку данная цепь имеет пять ветвей с неизвестными токами, необходимо составить пять уравнений. Выбрав положительные направления токов I1, I2, I3, I4 и I5 для узлов а и б, а также для контуров агда, абга и бвгб при обходе последних по часовой стрелке, получим:
Рис. 10. К расчету разветвленных электрических цепей с помощью законов Кирхгофа
Рис. 11. К пояснению метода контурных токов
Метод контурных токов дает возможность упростить расчет электрических цепей по сравнению с методом законов Кирхгофа за счет уменьшения числа уравнений, которые приходится решать совместно.
Любая разветвленная электрическая цепь состоит из нескольких смежных контуров. Например, в электрической цепи (рис. 10) таких контуров три: абвга, бдвб и аедба. Каждый контур имеет несмежные ветви, принадлежащие лишь данному контуру, и смежные ветви, принадлежащие также соседним контурам. Так, контур абвга имеет несмежную ветвь вга и две смежные ветви аб и бв.
Допустим, что в каждом контуре (рис. 11) имеется некоторый контурный ток, одинаковый для всех элементов контура. На рисунке 11 контурные токи обозначены II, III и IIII. Положительные направления контурных токов могут быть выбраны произвольно. Наложим на контурные токи следующее условие: контурные токи должны быть равны по абсолютному значению токам несмежных ветвей соответствующих контуров.
Если выбрать положительное направление тока несмежной ветви совпадающим с контурным током, то ток ветви должен быть равен контурному току; если же направить ток несмежной ветви против контурного тока, то он должен быть равен контурному току со знаком «–».
Так, токи в несмежных ветвях цепи будут равны:II = II; I3 = –III; I6 = – IIII;
I2 = I1 + I3 = II – III ; I4 = II + IIII; I5 = IIII + III.
Видно, что со знаком «+» должен быть взят тот контурный ток, направление которого совпадает с направлением тока смежной ветви; контурный ток, направленный в противоположную сторону, должен быть взят со знаком «–».
Уравнение по второму закону Кирхгофа при включении в него контурных токов в общем случае имеет вид:
Для рассматриваемой цепи (рис. 11) уравнения будут:
Метод узлового напряжения дает возможность просто произвести анализ и расчет электрической цепи, содержащей несколько параллельно соединенных активных и пассивных ветвей, например цепи, схема которой изображена на рисунке 12.
Рис. 12. Схема электрической цепи
Пренебрегая сопротивлением проводов, соединяющих ветви цепи, схему (рис. 12а) можно заменить более удобной для рассмотрения (рис. 12б).
В зависимости от значений и направлений ЭДС и напряжений, а также значений сопротивлений ветвей между узловыми точками а и b установится определенное узловое напряжение Uab. Предположим, что оно направлено так, как показано на рисунке 12, и известно. Зная напряжение Uab, легко найти все токи.
Выберем положительные направления токов, например так, как показано на рисунке. Тогда по второму закону Кирхгофа для контура, проходящего по первой ветви,
откуда:
Поступая аналогичным способом, нетрудно получить формулы для токов I2, I3 и I4:
По закону Ома для пятой ветви:
Для вывода формулы, позволяющей определить напряжение Uab. Преобразуем формулу по первому акону Кирхгофа:
Формула узлового напряжения в общем случае имеет вид:
Перед определением напряжения по последней формуле следует задаться его положительным направлением. Со знаком «+» должны входить ЭДС, направленные между точками а и b встречно напряжению Uab, и напряжения ветвей, направленные согласно с Uab. Знаки в последней формуле не зависят от направления токов и ветвей.
При анализе и расчете электрических цепей методом узлового напряжения целесообразно выбирать положительные направления токов после определения узлового напряжения. В этом случае положительные направления токов нетрудно выбрать таким образом, чтобы все они совпадали с их действительными направлениями.
Метод наложения основан на том, что в линейных электрических цепях ток любой ветви может быть определен как алгебраическая сумма токов от каждого источника в отдельности.
Расчет электрических цепей методом наложения производят в таком порядке. Из электрической цепи удаляют все источники ЭДС и напряжения, кроме одного. Сохранив в электрической цепи все резистивные элементы, в том числе и внутренние сопротивления источников, производят расчет электрической цепи. Внутренние сопротивления источников с указанными напряжениями полагают равными нулю.
Подобным образом поступают столько раз, сколько имеется в цепи источников.
Результирующий ток каждой ветви определяют как алгебраическую сумму токов от всех источников.
Для того чтобы результирующие токи совпадали с действительными направлениями, целесообразно выбирать положительные направления результирующих токов после определения токов от всех источников.
Метод наложения весьма удобен для анализа явлений, происходящих в электрических цепях при изменении их параметров.
Например, используя метод наложения, нетрудно определить характер изменения токов ветвей в цепи (см. рис. 13) при увеличении ЭДС E1 до E1′ .
Рис. 13. Схема электрической цепи
Действительно, предположим, что при некоторых параметрах цепи до увеличения E1 установились токи, действительные направления которых совпадают с указанными на рисунке 13. Для решения задачи заменим мысленно увеличение ЭДС E1 введением в первую ветвь дополнительного источника с r0доп = 0 и Едоп = E1′ – E1. После этого удалим из цепи все источники, кроме источника с ЭДС Едоп, и определим действительные направления дополнительных токов от этого источника, которые очевидны.
Поскольку дополнительный ток первой ветви I1доп будет совпадать по направлению с током I1, для определения результирующего тока первой ветви следует воспользоваться формулой I1′ = I1 + I1доп. На основании данной формулы можно сделать вывод о том, что при увеличении Е1 ток I1 будет возрастать.
К такому же выводу можно прийти и в отношении токов других ветвей, кроме третьей.
Так как дополнительный ток третьей ветви I3доп направлен против тока I3, то для определения результирующего тока нужно использовать формулу I3′ = I3 + I3доп. В отношении результирующего тока третьей ветви можно сделать такой вывод: при увеличении ЭДС Е1 ток I3 будет сначала уменьшаться, при некотором значении Е1 окажется равным нулю, а при дальнейшем увеличении Е1 изменит направление (I3 < 0) и по абсолютному значению будет возрастать.
Метод эквивалентного генератора дает возможность упростить анализ и расчет электрических цепей в том случае, когда требуется определить ток, напряжение или мощность лишь одной ветви.
Рис. 14. Схема электрической цепи эквивалентного генератора
Предположим, что требуется найти ток I ветви amb некоторой электрической цепи (рис. 14а), остальные элементы которой сосредоточены в предела прямоугольника, представляющего собой активный двухполюсник А.
Согласно методу наложения ток I не изменится, если в данную ветвь ввести два источника, ЭДС которых Е1 и ЕЭ равны и направлены в разные стороны (рис. 14б).
Ток I можно определить как разность двух токов: I = IЭ + I1,
где I1 – ток, вызванный всеми источниками двухполюсника А и ЭДС Е1 (рис. 14в);
IЭ – ток, вызванный только ЭДС ЕЭ (рис. 14г).
Если выбрать ЭДС Е1 таким образом, чтобы получить I1 = 0, то ток I будет равен:
где r
О проекте
О подписке