Этюд – небольшое исследование, посвященное какому-либо вопросу, изучению узкой темы.
Математика школьная – это учебный предмет, имеющий множество разветвлений. В расписании начальной школы стоит предмет «математика», которая представляет собой арифметику, с вкраплениями геометрических сведений. В средней школе она перерастает в два предмета: алгебру и геометрию, на стыке геометрии и алгебры появляется раздел тригонометрия. Геометрия из планиметрии переходит в стереометрию, а алгебра подступает к началам математического анализа. Попутно бегло просматриваются комбинаторика и теория вероятностей. В каждом из этих разделов изучается некая основа, необходимый минимум и программа идет дальше, чтобы в следующем разделе изучить тоже только самое необходимое. В результате, коснувшись в арифметике теории чисел, дальше необходимости научить детей выполнению четырех математических действий с числами мы не идем. В эпоху компьютеров, когда калькулятор есть в каждом смартфоне, необходимость этих практических навыков энтузиазма не вызывает, тем более не вызывает интереса. Остается простое требование: «надо, Федя, надо!» То, что может увлечь математикой, заинтересовать, не изучается, а остаются простые примеры на выполнение действий с числами. Именно примеры, не требующие ничего кроме механического соблюдения правил, а не задачи, в которых есть вопросы, заставляющие думать. Тем более не остается времени на рассказы из истории математики, показывающие развитие человеческой мысли.
Когда то в институте, в качестве учебника, мы пользовались книгой «Теория чисел» Александра Адольфовича Бухштаба. Особое впечатление на меня произвело начало книги, где приводился Краткий исторический очерк развития теории чисел и ее последняя глава, в которой перечислялись нерешенные проблемы аддитивной теории чисел, начиная с проблемы Гольдбаха, проблемы простых чисел-близнецов, и далее прямо по пунктам были сформулированы 18 недоказанных на то время утверждений. В этих гипотезах нет каких-то специальных терминов, сложных формулировок. Они просты для понимания, но оказались сложны для доказательства. Прошло полвека с момента моей учебы в институте, появились мощные компьютеры, а в тех проблемах из книги Бухштаба мало что сдвинулось. Проверить выполнение какой-либо гипотезы до немыслимо больших чисел, затратив многие часы компьютерного времени, пожалуйста, а доказать, что это верно для всех чисел вообще – с этим проблемы. Вот что вызывает истинный интерес: вроде бы все просто, понятно, а попробуй, докажи или опровергни!
Поэтому, имея цель заинтересовать, возможно, даже увлечь математикой, выбираем основу основ – натуральные числа.
Натуральные числа (от лат. naturalis – естественный) – числа, возникающие естественным образом при счёте: 1, 2, 3, 4, 5, 6, 7, 8, … . Последовательность всех натуральных чисел, расположенных в порядке возрастания, называется натуральным рядом чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, … .
Сделан первый шаг, и сразу возникают сложности. Некоторые считают, что в математике точность абсолютная, «дважды два четыре», независимо от каких бы то ни было обстоятельств, стран, личностей и чего-то другого. На самом деле были споры и до сих пор нет единого мнения о включении нуля во множество натуральных чисел. В нашей стране возобладало приведенное выше определение натуральных чисел, как возникших при счете и не имеющих в своем составе нуля. Существует и альтернативное определение натуральных чисел, как чисел обозначающих количество предметов. Вроде бы небольшая разница, но понятие количество допускает отсутствие предметов, то есть ноль, а счет предполагает, что есть предметы для счета, хотя бы один, а пустоту не считают. Это отступление сделано, чтобы подчеркнуть важность точного определения любого понятия. Измени его и многое меняется. Мы оставляем нулю невысокий статус просто цифры, используемой для позиционной записи чисел, но отказываем ему в высокой чести быть натуральным числом.
Расположение чисел в натуральном ряду позволяет сравнивать их по величине: число, отстоящее дальше от начала натурального ряда, больше числа, стоящего ближе к началу; число, стоящее правее в натуральном ряду чисел, больше любого числа, стоящего левее.
Не будь у нас натурального ряда чисел, мы бы не знали слова упорядочить. Натуральный ряд чисел: 1, 2, 3, 4, 5, 6, 7, 8, … – демонстрирует упорядочение по возрастанию в чистейшем виде и становится эталонным инструментом для упорядочения других объектов. Применяемое в словарях лексикографическое упорядочение слов делается на основе упорядочения алфавита, а алфавит упорядочен с использованием натурального ряда чисел: буква «а» – первая, буква «б» – вторая и так далее.
Натуральные числа – это первые числа, которые придумал человек. Множество натуральных чисел ограничено с одной стороны, у него есть минимальное число – единица, но в сторону увеличения оно бесконечно и этим объясняется тот факт, что до сих пор все свойства этого множества чисел не изучены до конца и многие тайны скрыты в этом стройном ряду чисел.
Числа возникли из потребности счета различных предметов и сравнения количественных показателей различных совокупностей предметов. Число – это абстракция, используемая для количественной характеристики объектов, отвлекаясь от природы этих объектов. Возникновение понятия натурального числа было важнейшим моментом в развитии математики. Появилась возможность изучать сами числа независимо от тех задач, в связи с которыми они возникли. Говоря о натуральных числах, сразу же нужно говорить о действиях или математических операциях с числами. В самой природе построения натурального ряда чисел заложено действие прибавление единицы, так как каждое следующее натуральное число получается из предыдущего увеличением его на единицу. Это первое действие с числами. Если в языке вначале было слово, то в математике вначале была единица. Затем к ней прибавили еще единицу и получили число два. К двойке прибавили единицу – получили три, и процесс устремился в бесконечность. Можно сказать, что единица и операция прибавление единицы породили бесконечно много натуральных чисел. Сложение двух натуральных чисел – это уже следующее действие, которое фактически является неоднократным прибавлением единицы. 5+3=5+1+1+1, то есть прибавить к числу 5 число 3 – это прибавить к пяти три раза единицу. При сложении любых двух натуральных чисел получается тоже натуральное число, действие замкнуто на множестве натуральных чисел. Особо останавливаться на фактах известных любому школьнику не будем, хотя и перепрыгнуть через них не упоминая нельзя, но цель книги – поиски интересного, может быть для кого-то нового материала.
Следующим замкнутым действием на множестве натуральных чисел будет умножение, которое по существу представляет собой дальнейшее развитие действия сложения. Умножение – это многократное сложение одинаковых слагаемых: 3·5=3+3+3+3+3.
Третье действие, не выводящее за рамки натуральных чисел, – это возведение в степень, которое в свою очередь представляет собой многократное умножение одинаковых множителей: 43=4·4·4.
Таким образом, в основе сложения стоит неоднократное прибавление единицы, в основе умножения стоит неоднократное сложение, а в основе возведения в степень – неоднократное умножение, поднимая каждый раз предыдущее действие на новую ступень.
32=3·3=3+3+3=3+1+1+1+1+1+1.
Эти действия можно считать основными, хотя исторически, после сложения, скорее всего, появилось вычитание, как действие обратное сложению. Но вычитание не замкнуто на множестве натуральных чисел, вычитать здесь можно только из большего числа меньшее число. Даже вычитание равных чисел выводит нас из множества натуральных чисел, среди которых нет нуля. Ноль не является натуральным числом, и ноль не может стоять первой цифрой в записи натурального числа. Даже если его там искусственно поставить, он будет незначащей цифрой.
В связи ограничениями, накладываемыми на вычитание чисел, необходимо ввести действия сравнения чисел между собой, чтобы иметь возможность определить, выполнимо ли вычитание для определенной пары взятых чисел. Учитывая упорядоченность натурального ряда чисел по возрастанию, для любой пары чисел a и b можно сделать одно из трех заключений: a<b, a>b, a=b.
Действие, с которым больше всего проблем на множестве натуральных чисел – это действие деления натуральных чисел, так как выполнимо оно не всегда, и определение возможности деления одного числа на другое не выходя за рамки натуральных чисел, не такое простое действие как для вычитания. Существует целый ряд признаков делимости, которые позволяют, не выполняя само деление, дать ответ возможно ли деление без остатка в принципе. Основные признаки делимости рассмотрим в разделе упражнений с натуральными числами.
Вернемся к единице. Единица единственное из натуральных чисел, которое порождает новые натуральные числа только при сложении, но не при умножении или возведении в степень. При умножении на единицу нового числа не получается, единица в любой степени остается единицей! У древних греков единица служила основой всех других натуральных чисел и с этим не поспоришь. Прибавление единицы к числу меняло его четность. Изменение четности числа от прибавления единицы можно посмотреть в одном очень интересном алгоритме. Алгоритм, позволяет за конечное число шагов-операций превратить любое натуральное число в единицу. Назовем его Алгоритм возвращения к началу. Алгоритм циклический, шаги повторяются до получения единицы. Берем произвольное натуральное число.
Шаг 1. Если взятое число четное, нужно разделить его на 2. Если число нечетное, перейти к шагу 2.
Шаг 2. Если число нечетное, нужно умножить его на 3 и прибавить 1. После чего перейти к шагу 3.
Шаг 3. Вернуться в начало алгоритма и повторять вышеописанные действия циклически, пока не получится единица.
О проекте
О подписке