Читать книгу «От микроорганизмов до мегаполисов. Поиск компромисса между прогрессом и будущим планеты» онлайн полностью📖 — Вацлава Смила — MyBook.





Если взять любой размер населения Земли, например, тысячу миллионов, количество людей будет увеличиваться по модели 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 и т. д., а пропитание – по модели 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 и т. д. Через два века с четвертью соотношение населения и средств пропитания будет 512 к 10, через три века – 4096 к 13, а через две тысячи лет разница будет почти неисчислимой, хотя сельскохозяйственная продукция к тому времени возрастет в огромной степени.

Чарльз Дарвин иллюстрировал процесс, ссылаясь на Мальтуса и Линнея и собственные расчеты последствий безудержного размножения слонов (Darwin, 1861, 63):

Не существует исключения из правила, что каждое органическое существо размножается с такой скоростью, что если не уничтожать его, то Земля вскоре покроется потомством одной пары. Даже число медленно размножающихся людей удвоилось за двадцать пять лет, и при такой скорости через несколько тысяч лет от их потомков будет не протолкнуться. Линней подсчитал, что если однолетнее растение дает всего два семени – а таких непродуктивных растений не существует – и выросшие из них растения снова дадут два семени и так далее, то через двадцать лет этих растений будет миллион. Слоны считаются самыми медленно размножающимися из животных, и мне было нелегко оценить вероятную минимальную скорость их естественного прироста: предположим, что они начинают размножаться в возрасте тридцати лет и продолжают до девяноста, производя на свет в этот период три пары детенышей. Если это так, то к концу пятого века будет существовать 5 млн слонов, являющихся потомками первой пары.

Как я объясню подробнее в главах, посвященных росту организмов и артефактов, эти расчеты нужно воспринимать с правильной долей внимания и скепсиса, но у них есть два общих фундаментальных свойства. Во-первых, в отличие от линейного роста, где абсолютный прирост на единицу времени не меняется, экспоненциальный рост ведет к увеличению абсолютной прибавки на единицу времени по мере расширения базы. Экономика США росла на 5,5 % в 1957-м, а также в 1970 году, но во втором случае абсолютный прирост был в 2,27 раза больше – $56 млрд по сравнению с $24,7 млрд (FRED, 2017). В большинстве распространенных случаев экспоненциального роста его скорость не является идеально постоянной: она или немного опережает график, или колеблется в пределах среднего значения за длительный период.

Немного сокращающаяся скорость роста даст менее ярко выраженный рост. Десятилетние значения роста ВВП США с 1970 года представляют хороший пример: они сократились с 9,5 % в течение 1970-х до 7,7 % в течение 1980-х годов, 5,3 % в течение 1990-х и до всего 4 % в течение первого десятилетия XXI века (FRED, 2017). Возрастающая скорость роста приведет к суперэкспоненциальному темпу роста: годовой темп составил 8,6 % в течение первых пяти лет, 9,8 % – в период между 2001 и 2005 годами и 11,3 % между 2006 и 2010 годами (NBS, 2016). Колеблющийся темп роста является нормой для развития экономики в долгосрочной перспективе: например, экономический рост США (выраженный в ВВП) во второй половине XX века составлял в среднем 7 % в год, но это сложное среднее значение изменений скрывает значительные годовые колебания, достигавшие таких крайних значений, как 0,3 % в 1954 году (единственный год сокращения ВВП) и 13 % в 1978 году (FRED, 2017).

Во-вторых, экспоненциальный рост, природный или антропогенный, всегда является лишь временным феноменом, заканчивающимся в результате разнообразных физических, экологических, экономических или социальных ограничений. Ядерная цепная реакция обязательно завершается (в связи с ограниченной массой расщепляющегося материала), как и схемы (пирамиды инвестиций) Понци (когда приток новых денежных средств опускается ниже выплат). Но финансовые пирамиды могут существовать довольно долго: вспомните аферу Бернарда Мейдоффа – настолько продуманную схему Понци, что надзорные органы, неоднократно (хотя определенно не настолько тщательно, как следовало) проверявшие его компанию, более 30 лет не могли ни к чему прицепиться. Мейдофф получил обманным путем около $65 млрд от инвесторов, прежде чем его пирамида рухнула в результате крупнейшего со времен окончания Второй мировой войны экономического кризиса осенью 2008 года (Ross, 2016).


Рис. 1.6. Прогнозы роста авиаперевозок в США (в миллиардах пассажирокилометров) на основе данных за 1930–1980 годы (сверху, больше всего подходит регрессия четвертого порядка) и за 1930–2015 годы (снизу, больше всего подходит логистическая кривая с точкой перегиба в 1987 году). Данные из различных годовых отчетов Международной организации гражданской авиации


Вот почему долгосрочное прогнозирование на основе экспоненциального роста может оказаться некорректным. Эту мысль можно проиллюстрировать с помощью множества примеров, основанных на реальных историях, и я выбрал историю впечатляющего роста пассажиропотока авиакомпаний в США после 1950 года. В течение 1950-х годовой экспоненциальный рост составлял в среднем 11,1 %, а в 1960-х и 1970-х соответственно 12,4 и 9,4 %. График годовых показателей пассажирокилометров всех американских авиалиний в период между 1930 и 1980 годами представляет собой траекторию, почти идеально соответствующую регрессии четвертого порядка (полиномиальному уравнению четвертого порядка, где r2 = 0,9998), и при продолжении этой модели роста показатели 1980 года к 2015 году выросли бы почти в 10 раз (рис. 1.6).

В реальности же пассажиропоток американских авиалиний пошел по траектории сокращения роста (в первом десятилетии XXI века средний годовой рост составил всего 0,9 %), а полный цикл с 1930 по 2015 год хорошо вписывается в логистическую (симметричную) кривую с четырьмя параметрами, где значение 2015 года всего в 2,3 раза выше по сравнению с 1980 годом, и дальнейший ограниченный прирост ожидается только к 2030 году (рис. 1.6). Принимать временные высокие темпы ежегодного экспоненциального роста за индикаторы будущего долгосрочного развития – фундаментальная ошибка, а также стойкая привычка, особенно свойственная тем, кто продвигает новые устройства, разработки или практики: они берут темпы роста на ранних стадиях, которые часто бывают впечатляющими, и используют их, чтобы спрогнозировать неизбежное господство развивающегося феномена.

Эту ошибку можно проиллюстрировать с помощью множества свежих примеров, и я выбрал пример роста мощности ветряных турбин Vestas, установок, ведущих к сдвигу в сторону декарбонизации глобального производства электричества. Этот датский производитель начал продавать машины мощностью 55 кВт в 1981 году, к 1989 году у него была турбина мощностью 225 кВт, в 1995 году была представлена машина мощностью 600 кВт, а в 1999 году появилась турбина мощностью 2 МВт. Наиболее подходящая кривая для траектории этого быстрого роста за последние двадцать лет XX века (логистическая кривая с пятью параметрами, где R2 = 0,978) спрогнозировала бы к 2005 году модели турбин с мощностью почти 10 МВт и свыше 100 МВт к 2015 году. Но в 2018 году самый мощный агрегат Vestas для установки на суше производил всего 4,2 МВт, а самый большой, предназначенный для морских ветряных электростанций, – 8 МВт с возможностью увеличения до 9 МВт (Vestas, 2017a), а появление агрегата мощностью 100 МВт стало крайне маловероятным. Этот пример отрезвляющего контраста между быстрым ростом на ранних этапах развития технических инноваций и последующим неизбежным формированием сигмоидальных (S-образных) кривых стоит вспоминать каждый раз, когда вы слышите в новостях о том, что к 2025 году все машины будут электрическими или что к 2030 году появятся новые батареи с впечатляюще высокой энергоемкостью.

В тех случаях, когда экспоненциальный рост продолжается длительное время и ставит новые рекорды, окончательная, неотвратимая сила этой реальности может казаться неприменимой. Многим рационально мыслящим людям удавалось убедить себя – повторяя мантру «на этот раз все по-другому», – что результаты будут умножаться в течение длительного периода. Лучшие примеры этих, часто коллективных, заблуждений можно встретить в истории рыночных пузырей, и я довольно подробно опишу два особенно примечательных недавних события: рост экономики Японии до 1990 года и Новую экономику Америки 1990-х.

Экономический подъем Японии в 1980-х является одним из лучших примеров, которые нужно учитывать людям, желающим трезво воспринимать возможности экспоненциального роста. После роста в 2,6 раза в 1970-е годы Nikkei 225 (ведущий японский индекс фондового рынка и эквивалент американского Dow Jones Industrial) вырос на 184 % в период между январем 1981 и 1986 года, затем еще на 43 % в 1986 году, почти на 13 % в 1987 году, почти на 43 % в 1988 году и еще на 29 % в 1989 году (Nikkei 225, 2017). В период между январем 1981-го и декабрем 1989 года Nikkei 225 вырос более чем в пять раз, что соответствует среднегодовому экспоненциальному росту в 17 % за десять лет и 24 % за вторую половину. Одновременно ВВП Японии продолжал расти с годовым темпом более 4 %, и обменный курс йены укрепился с ¥239/US$ в январе 1980 года до ¥143/US$ к декабрю 1989 года.

Но должна была наступить отрезвляющая развязка, и в главе 6 я расскажу о том, что происходило после 1989 года. Но экспоненциальный рост легко вводит в заблуждение, и в 1999 году, через десять лет после того как Nikkei достиг своего пика, я размышлял об опыте, пережитом Японией, ожидая арендованную машину в аэропорту Сан-Франциско. Кремниевая долина переживала годы пузыря доткомов, и, даже зарезервировав машину заранее, приходилось ждать, пока только что возвращенные автомобили обслужат и снова выпустят в самую гущу забитого Бэйшор-Фривей. Памятуя японский опыт, я думал, что каждый год после 1995-го мог быть последним периодом иррационального изобилия, как назвал его Алан Гринспен, но ни 1996-й, ни 1997-й, ни 1998-й не стали им. А многие экономисты заверяли американских инвесторов – даже с большей готовностью, чем десятью годами ранее, – что этот период экспоненциального роста отличается и что старые правила неприменимы к Новой экономике, в которой бесконечный быстрый рост будет продолжаться беспрепятственно.

В 1990-е Dow Jones Industrial Average – предположительно под влиянием Новой экономики – продемонстрировал самый высокий десятилетний рост в истории и поднялся со значения 2810 в начале января 1990 года до 11 497 в конце декабря 1999 года (FedPrimeRate, 2017). Эти показатели соответствуют годовому экспоненциальному росту в 14 % за десять лет с пиковыми значениями 33 % в 1995-м и 25 % в 1996 году. В продолжение этого роста к 2010 году уровень индекса достиг приблизительно 30 000. Nasdaq Composite Index, отражающий растущую мощь отрасли компьютерных технологий и коммуникаций (во главе с компаниями Кремниевой долины, стремительный рост капитализации которых был обусловлен биржевыми спекуляциями), продемонстрировал в 1990-х еще более высокие результаты: его экспоненциальный рост в среднем составил почти 26 % в год в период между апрелем 1991 года, когда он достиг отметки в 500 пунктов, и 9 марта 2000 года, когда он достиг 5046 пунктов (Nasdaq, 2017).

Даже обычно осторожные в высказываниях обозреватели были поражены. Джереми Сигел из Уортонской школы бизнеса не мог скрыть восхищения: «Это потрясающе. Каждый год мы говорим, что более 20 % роста снова быть не может, – и снова получаем его. Я по-прежнему считаю, что нам нужно привыкать к более низкой, более нормальной прибыли, но кто знает, когда закончится эта полоса?» (Bebar, 1999). А энтузиасты зарабатывали деньги на оптовой продаже невозможного: один спрогнозировал, что Dow Jones достигнет отметки 40 000 (Elias, 2000), другой – что он неизбежно поднимется до 100 000 (Kadlec and Acampora, 1999). Но конец пришел, и опять-таки довольно быстро. К сентябрю 2002 года Dow Jones упал до отметки 9945 пунктов, почти на 40 % по сравнению с пиком 1999 года (FedPrimeRate, 2017), а к маю 2002 года Nasdaq Composite рухнул почти на 77 % по сравнению с пиком в марте 2000 года (Nasdaq, 2017).

Технический прогресс также иногда развивается по экспоненте и, как я покажу в главе 3, в некоторых случаях продолжается десятилетиями. Максимальная мощность паровых турбин является прекрасным примером долгосрочного экспоненциального роста. Чарльз Алджернон Парсонс запатентовал первую модель турбины в 1884 году и почти сразу же создал маленькую установку, которую можно видеть в холле Parsons Building в Trinity College в Дублине, с мощностью всего 7,5 кВт, но первая коммерческая турбина, начавшая вырабатывать электричество в 1890 году, была в 10 раз больше и имела мощность 75 кВт (Parsons, 1936).

В результате последующего быстрого роста к 1899 году появилась первая турбина мощностью 1 МВт, через три года – установка мощностью 2 МВт, в 1907 году – первая модель мощностью 5 МВт, и перед Первой мировой войной максимальная мощность турбины, установленной на станции Фиск-стрит Commonwealth Edison Co. В Чикаго, составила 25 Мвт (Parsons, 1911). Между появлением первой коммерческой модели мощностью 75 кВт в 1890 году и установкой мощностью 25 МВт в 1912 году максимальная мощность паровых турбин Парсонса росла с экспоненциальной скоростью более 26 %, удваиваясь менее чем за три года. Это было значительно быстрее, чем рост мощности первых паровых двигателей в XVIII веке, когда Бенуа Фурнерон начал серийный выпуск первых моделей.

Иногда показатели растут экспоненциально благодаря не постоянному совершенствованию изначальной технологии, а серии инноваций, когда этап следующей инновации начинается там, где старая достигла своего предела: траектории индивидуального роста, несомненно, имеют S-образную форму, но огибающая кривая[5] явно носит экспоненциальный характер. История электронно-лучевых трубок, которая кратко будет изложена в главе 4, является прекрасным примером экспоненциальной огибающей кривой, охватывающей почти век прогресса. В главе 4, посвященной росту артефактов, я подробно рассмотрю самый, пожалуй, известный случай современного экспоненциального роста, продолжавшегося 50 лет: рост числа транзисторов на кремниевой микросхеме, описанный законом Мура, согласно которому оно удваивается каждые два года.

И прежде, чем оставить тему экспоненциального роста, будет уместно упомянуть простое правило расчета периода удвоения значения, идет ли речь о раковых клетках, банковских счетах или вычислительной мощности компьютеров или, наоборот, расчете темпов роста с использованием известного времени удвоения. Точные результаты получаются путем деления натурального логарифма 2 (равного 0,693)[6] на преобладающий темп роста (выраженный как доля от единицы, например 0,1 для 10 %), но довольно точный приблизительный результат можно получить, разделив 70 на темп роста, выраженный в процентах. Когда экономика Китая росла на 10 % в год, период удвоения составлял семь лет; и наоборот, удвоение числа компонентов на кремниевой пластине за два года предполагает годовой темп экспоненциального роста около 35 %.

Гиперболический рост

Неограниченный и, следовательно, на Земле только временный экспоненциальный рост не следует путать (как это иногда бывает) с гиперболическим ростом. Для экспоненциального роста характерно увеличение абсолютного темпа роста, однако он остается функцией по времени, приближенному к бесконечности. В отличие от него гиперболический рост достигает своей кульминации в абсурде (сингулярности), когда значение растущей переменной достигает бесконечности за конечный промежуток времени (рис. 1.7). Это конечное событие, конечно, невозможно в любых конечных пределах, и сдерживающая обратная связь в конечном счете окажет тормозящий эффект и прекратит гиперболический рост. Но, начавшись в низком темпе, гиперболические траектории могут развиваться в течение относительно длительных периодов времени, прежде чем их развитие остановится и сменится другой формой роста (или спада).


Рис. 1.7. Кривая гиперболического роста в сравнении с экспоненциальным ростом




1
...
...
10