В 1945 году Харт опубликовал всестороннее исследование логистических социальных тенденций со множеством примеров, поделенных на серии, отражающие рост конкретных социальных единиц (населения, городов, урожая, производства и потребления промышленных продуктов, выдачи патентов на изобретения, длины железных дорог), распространение конкретных культурных явлений (охват детей школьным образованием, владение автомобилями, социальные и гражданские движения) и так называемые индексы социальной эффективности, включая продолжительность жизни, рекорды скорости и доход на душу населения (Hart, 1945). В течение двадцати лет после окончания Второй мировой войны наблюдался быстрый рост населения и экономический рост, вызванный расширением технических возможностей. В тот период преобладали многочисленные примеры экспоненциального роста, но с ростом экологического сознания в конце 1960-х и 1970-х логистическая функция снова получила популярность. Неудивительно, что существует множество публикаций о том, как описать данные с помощью логистической кривой (Cavallini, 1993; Meyer et al., 1999; Arnold, 2002; Kahm et al., 2010; Conder, 2016).
Существует еще одна довольно распространенная модель роста – кривая Гомпертца, выведенная еще раньше функции Ферхюльста. Изначально модель была предложена в 1825 году Бенджамином Гомпертцем (1779–1865), британским математиком, для оценки смертности людей (Gompertz, 1825). В ней, как и в логистической функции, имеются три константы, асимптота и фиксированная степень асимметрии, но, как уже отмечалось, логистическая функция имеет точку перегиба точно посередине между двумя асимптотами, и ее кривая радиально симметрична по отношению к этой точке перегиба. В отличие от нее функция Гомпертца дает асимметричную кривую с точкой перегиба на уровне 36,78 (е–1) асимптотического максимума и, следовательно, асимметрична (Tjørve and Tjørve, 2017). Эта кривая подходит лучше, чем логистическая, для моделирования процессов сигмоидального роста, которые замедляются после достижения приблизительно трети от своего максимального значения (Vieira and Hoffmann, 1977).
Более века спустя Винзор (Winsor, 1932, 1) отмечал, что «кривая Гомпертца долго интересовала только статистиков страховых учреждений. Однако в последнее время она используется различными авторами как кривая роста для оценки как биологических, так и экономических феноменов». Но он называл только три области применения: рост веса скота (но только после того как животные достигли около 70 % своей зрелой массы), рост размера раковины двустворчатого моллюска и рост гигантского Тихоокеанского моллюска, – делая вывод, что в силу практически аналогичных свойств ни логистическая кривая, ни кривая Гомпертца не имеют «значительного преимущества друг перед другом в отношении количества явлений, рост которых можно было бы описать с их помощью» (Winsor, 1932, 7).
Но это было до того, как во многих исследованиях было обнаружено, что более старая функция во многих случаях является предпочтительной. К природным явлениям, которые лучше всего описывает функция Гомпертца, относятся такие фундаментальные биохимические процессы, как рост нормальных и злокачественных клеток, кинетика ферментативных реакций и интенсивность фотосинтеза как функция концентрации CO2 в атмосфере (Waliszewski and Konarski, 2005). Когда логистическое уравнение стало чаще использоваться для изучения роста организмов, многие исследователи отмечали ограничения функции при воспроизведении наблюдаемого роста животных и растений и ее недостаточную надежность при прогнозировании прироста на основе прошлых показателей. Нгуимке (Nguimkeu, 2014) предлагает простой дифференциальный тест для выбора между моделями Гомпертца и логистического роста.
Основным недостатком кривой логистического роста является ее симметрия: она напоминает колебания маятника, набирающего максимальную скорость в середине траектории. Точка перегиба логистической кривой приходится на 50 % максимального значения, в результате чего схема роста дает симметричную колоколообразную кривую (кривую Гаусса), которая будет рассмотрена в следующем разделе. Многие организмы демонстрируют более быстрые темпы роста на начальных стадиях, и кривые их роста достигают точки перегиба гораздо раньше, чем асимптотического максимума. Аналогично многие процессы распространения (будь то внедрение новых промышленных методов или распространение владения бытовой техникой) следуют асимметричной S-образной траектории.
И поскольку степень асимметрии также зафиксирована в асимметрической функции Гомпертца, многие попытки избавиться от этих недостатков ведут к формулированию нескольких дополнительных моделей роста логистического типа. Цуларис (Tsoularis, 2001) рассмотрел эти производные модели – главные из которых были представлены Берталанффи (von Bertalanffy, 1938), Ричардсом (Richards, 1959), Блумбергом (Blumberg, 1968), Тернером и др. (Turner et al., 1976) и Берчем (Birch, 1999), – а также предложил собственную обобщенную логистическую функцию, из которой можно получить все эти модификации. Они не систематизированы в зависимости от практической ценности: все эти функции принадлежат к одной семье (являясь вариациями на тему S-образного роста), и ни одна из них не превосходит другие сигмоидальные кривые с тремя постоянными по степени пригодности.
Фон Берталанффи (von Bertalanffy, 1938) построил уравнение роста на аллометрическом (неравномерном) соотношении между скоростью обмена веществ и массой тела животного, где масса меняется в связи с разницей анаболических и катаболических процессов. Максимальный темп роста функции (точка перегиба) находится на уровне около 30 % (8/27) асимптотического значения и применяется при изучении роста и продукции лесного хозяйства, но особенно в гидробиологии, для коммерческих видов рыбы, таких как треска (Shackell et al., 1997), тунец (Hampton, 1991), а также акул (Cailliet et al., 2006) и даже белых медведей (Kingsley, 1979). Однако Рофф (Roff, 1980, 127) доказывал, что данная функция «в лучшем случае пригодна для отдельных случаев, а в худшем – лишена смысла» и от нее следует отказаться, так как она исчерпала себя в исследованиях рыболовного промысла. Дей и Тейлор (Day and Taylor, 1997) также пришли к выводу, что уравнение фон Берталанффи не следует использовать для моделирования возраста и размера организмов в период зрелости.
Ричардс (Richards, 1959) модифицировал уравнение фон Берталанффи, чтобы оно соответствовало эмпирическим данным о росте растений. Функция, также известная как модель роста Чапмана – Ричардса, имеет на один параметр больше, чем логистическая кривая (необходимый для асимметрии), и широко используется в исследованиях лесного хозяйства, а также для моделирования роста млекопитающих и птиц и для сравнения влияния ухода на рост растений, но имеются и возражения против ее использования (Birch, 1999). Ее точка перегиба колеблется на уровне от менее 40 % до почти 50 % асимптотического значения. Тернер и др. (Turner et al., 1976) называл модифицированное ими уравнение Ферхюльста универсальной функцией роста. Гиперлогистическая функция Блумберга (Blumberg, 1968) также является модификацией уравнения Ферхюльста, предназначенной для моделирования роста размеров органов, а также динамики населения.
И распределение Вейбулла, изначально разработанное для изучения вероятности отказа вследствие изменения свойств материала (Weibull, 1951) и используемое в тестах на надежность в инжиниринге, легко модифицируется для получения гибкой функции роста, которая может дать самые разнообразные сигмоидальные функции роста. Оно используется в лесном хозяйстве для моделирования высоты и объемного прироста отдельных видов деревьев, а также объема и возраста полиморфических лесных насаждений (Yang et al., 1978; Buan and Wang, 1995; Gómez-García et al., 2013). Двумя последними пополнениями по-прежнему растущего семейства сигмоидальных кривых являются новое уравнение роста, разработанное Берчем (Birch, 1999), и уже упоминавшаяся обобщенная логистическая функция Цулариса (Tsoularis, 2001). Берч модифицировал уравнение Ричардса, чтобы оно лучше подходило для универсальных имитационных моделей, особенно для представления роста различных видов растений с отличающимися вегетационными периодами, тогда как Цуларис (Tsoularis, 2001) предложил уравнение обобщенного логистического роста, включающее все прежде использовавшиеся функции в качестве особых случаев.
Логистические кривые являются любимым инструментом специалистов по прогнозам благодаря их способности отражать, часто очень точно, траектории роста как живых организмов, так и антропогенных артефактов и процессов. Конечно, с их помощью можно сделать ценные открытия, но в то же время я должен предостеречь от излишнего энтузиазма при использовании логистических кривых в качестве инструментов прогнозирования отказоустойчивости. В своем вердикте Ноэль Бонней (Noel Bonneuil, 2005, 267) вспоминал «золотой век логистической кривой, когда Перл с энтузиазмом применял одну и ту же функцию к любому случаю роста, от длины хвостов крыс до данных переписи населения США» и развенчал заявления об удивительно точном применении этой модели к историческим данным, назвав их «сомнительным триумфом: большинство процессов ограниченного роста действительно напоминают логистические, но это мало способствует пониманию исторических процессов… Подбор кривых слишком часто вводит в заблуждение по двум направлениям: его не только не следует использовать в качестве эмпирического доказательства, но он может скрывать важные детали».
Очевидно, что применение этих кривых для долгосрочного прогнозирования не гарантирует успеха. Их использование может давать новые идеи и обеспечивать представление о пределах, и в этой книге я представлю примеры из прошлого, когда прогнозы оказывались очень точными и могли служить надежным признаком ближнесрочного роста. Но в других случаях даже высокоточное логистическое соответствие прошлых траекторий приводило к обманчивым выводам о предстоящем росте, а ошибки прогнозов превосходили ожидаемые и приемлемые ±10–25 % отклонений за период в 10–20 лет.
В один из первых обзоров логистических трендов, опубликованных в конце Второй мировой войны, Харт (Hart, 1945) включил данные о скорости самолетов в период между 1903 и 1938 годами: эта траектория очень близко соответствовала логистической кривой с точкой перегиба в 1932 году и максимальной скоростью около 350 км/ч, но за десять лет после этого технический прогресс дважды опроверг его вычисления. Во-первых, рост мощности поршневых двигателей (на которых работали самолеты в военное время) достиг практических пределов, и вскоре их стали применять в пассажирских авиаперевозках. Самолет Lockheed L–1049 Super Constellation, впервые поднявшийся в воздух в 1951 году, имел крейсерскую скорость 489 км/ч и максимальную скорость 531 км/ч, что примерно на 50 % выше предсказанной логистическим потолком Харта.
Рис. 1.15. Самолет, поднявший потолок логистического роста крейсерской скорости: Boeing 707. Изображение из wikimedia
Super Constellation стал самым быстрым трансатлантическим авиалайнером, но его господство было недолгим. Злополучный британский самолет de Havilland Comet совершил свой первый полет в январе 1951 года и был снят с производства в 1954 году, а первый рейс реактивного Boeing 707, принадлежавшего американской компании Pan Am, состоялся в октябре 1958 года (Smil, 2010b; рис. 1.15). Турбореактивные двигатели, первые газотурбинные двигатели, увеличили крейсерскую скорость пассажирских самолетов (начавших летать в 1919 году) более чем вдвое по сравнению с периодом до Второй мировой войны и создали новую логистическую кривую с точкой перегиба в 1945 году и асимптотой в районе 900 км/ч (рис. 1.16). Более мощные и эффективные турбореактивные двухконтурные двигатели впервые были представлены в 1960-х годах и позволили увеличить размер самолетов и снизить потребление топлива, но их максимальная крейсерская скорость практически не изменилась (Smil, 2010b).
Рис. 1.16. Логистическая кривая, отражающая рост крейсерской скорости пассажирских авиалайнеров в период с 1919 по 2039 год (точка перегиба в 1945 году, асимптотическая крейсерская скорость 930,8 км/ч). Построена на основе данных о скоростях конкретных самолетов, начиная с de Havilland DH–16 компании KLM в 1919 году и заканчивая Boeing 787 в 2009 году
В 1970-е годы казалось, что траектория скорости самолетов может еще вырасти за счет сверхзвуковых самолетов, но Concorde (крейсерская скорость которого составила 2150 км/ч, что в 2,4 раза больше, чем у широкофюзеляжных лайнеров) оставался дорогостоящим исключением, пока в 2003 году от его производства не отказались (Glancey, 2016). К 2018 году несколько компаний (Spark Aerospace и Aerion Corporation для Airbus, Lockheed Martin и Boom Technology в Колорадо) работали над проектами сверхзвуковых самолетов, и, хотя любые прогнозы относительно их массового коммерческого использования крайне преждевременны, не исключено, что в XXI веке произойдет еще одно удвоение (по крайней мере некоторых) крейсерских скоростей.
Одной из наиболее богатых иллюстраций излишнего логистического энтузиазма является книга на тему прогнозов, подзаголовок которой – «Характерные свойства общества раскрывают прошлое и предсказывают будущее» – указывает на веру автора в прогностическую силу логистической функции. Модис (Modis, 1992) использовал логистические кривые для прогнозирования траекторий развития многих современных технологий (от доли автомобилей с каталитическими конвертерами до мощности реактивных двигателей) и разнообразных экономических и социальных феноменов (от роста нефте- и газопроводов до объема пассажирских авиаперевозок). Одно из выделенных им совпадений данных и кривой касалось роста мировых авиаперевозок: согласно его прогнозу, к концу 1990-х годов он должен был достичь 90 % от предполагаемого потолка. В реальности же к 2017 году воздушные перевозки были на 80 % выше, чем в 2000 году, а количество пассажиров, перевозимых в год, более чем удвоилось (World Bank, 2018).
Кроме того, Модис представил длинную таблицу прогнозируемых уровней насыщения, взятых у Грублера (Grübler, 1990). Не прошло и 30 лет, как выяснилось, что некоторые из этих прогнозов оказались впечатляюще ошибочными. Примечательным примером такой ошибки является прогноз мирового числа автомобилей: их количество должно было достичь 90 % уровня насыщения к 1988 году.
В то время насчитывалось около 425 млн зарегистрированных автомобилей, а предполагаемый уровень насыщения составлял около 475 млн, но к 2017 году был зарегистрирован 1 млрд автомобилей, более чем вдвое больше предполагаемого максимума, и их количество в мире продолжает расти (Davis et al., 2018).
Маркетти (Marchetti, 1985; 1986b) провозгласил диктат логистического роста «одним из самых защищаемых оплотов человеческого эго, оплотом свободы, и особенно свободы творчества», сделав вывод, что «каждый из нас обладает внутренней программой, регулирующей его производительность до самой смерти… и люди умирают, исчерпав 90–95 % своего потенциала» (Marchetti, 1986b, рис. 42). Проанализировав совокупное наследие Моцарта, он пришел к выводу, что к моменту своей смерти в возрасте 35 лет «он уже сказал все, что должен был сказать» (Marchetti, 1985, 4). Модис (Modis, 1992) с энтузиазмом воспринял эту мысль и развил ее.
Изобразив все произведения Моцарта на S-образной кривой, Модис (Modis, 1992, 75–76) заявил не только, что «Моцарт сочинял с момента рождения, но его первые восемнадцать произведений не были записаны, так как он еще не умел ни писать, ни достаточно хорошо говорить, чтобы продиктовать их своему отцу». Он утверждал, что с точностью порядка 1 % его логистическая кривая также указывает, что общий потенциал Моцарта составлял 644 произведения, и поскольку к моменту смерти его творческие возможности были исчерпаны на 91 %, то, повторяя мысль Маркетти, «Моцарту мало что осталось сделать. Его работа в этом мире была практически завершена».
Интересно, что бы ответил на это Бонней! Я построил собственную кривую, используя сохранившийся каталог Кехеля, включающий 626 произведений за период с 1761 по 1791 год (Giegling et al., 1964). Нанеся на график значения за пятилетние интервалы, я получил симметричную логистическую кривую с точкой перегиба в 1780 году (R2 = 0,995): уровень насыщения составил 784 произведения, и к 1806 году, когда Моцарту исполнилось бы 50 лет, он написал бы 759 из них (рис. 1.17а). Введя число произведений для каждого продуктивного года жизни Моцарта, я обнаружил, что лучше всего им соответствует ассиметричная (с пятью параметрами) сигмоидальная кривая (R2 = 0,9982), прогнозирующая 955 произведений к 1806 году (рис. 1.17b).
Рис. 1.17. Произведения Моцарта, вписанные в кривые роста, симметричную (а) и асимметричную (b) логистическую функцию, квадратическую регрессию (c) и регрессию четвертого порядка (d), все из которых имеют высокую степень соответствия (R2
О проекте
О подписке