Читать книгу «Совместимость: Как контролировать искусственный интеллект» онлайн полностью📖 — Стюарта Рассел — MyBook.

2. Разумность людей и машин

Если вы зашли в тупик, имеет смысл вернуться назад и выяснить, в какой момент вы свернули не в ту сторону. Я заявил, что стандартная модель ИИ, в которой машины оптимизируют фиксированную цель, поставленную людьми, – это тупик. Проблема не в том, что у нас может не получиться хорошо выполнить работу по созданию ИИ, а в том, что мы может добиться слишком большого успеха. Само определение успеха применительно к ИИ ошибочно.

Итак, пройдем по собственным следам в обратном направлении вплоть до самого начала. Попытаемся понять, как сложилась наша концепция разумности и как получилось, что она была применена к машинам. Тогда появится шанс предложить лучшее определение того, что следует считать хорошей системой ИИ.

Разумность

Как устроена Вселенная? Как возникла жизнь? Где ключи к пониманию этого? Эти фундаментальные вопросы заслуживают размышлений. Но кто их задает? Как я на них отвечаю? Как может горстка материи – несколько килограммов розовато-серого бланманже, которое мы называем мозгом, – воспринимать, понимать, прогнозировать и управлять невообразимо огромным миром? Очень скоро мозг начинает исследовать сам себя.

Тысячелетиями мы пытаемся понять, как работает наш ум. Первоначально это делалось из любопытства, ради самоконтроля и вполне прагматичной задачи решения математических задач. Тем не менее каждый шаг к объяснению того, как работает ум, является и шагом к воссозданию возможностей ума в искусственном объекте – то есть к созданию ИИ.

Чтобы разобраться в том, как создать разумность, полезно понять, что это такое. Ответ заключается не в тестах на IQ и даже не в тесте Тьюринга, а попросту во взаимосвязи того, что мы воспринимаем, чего хотим и что делаем. Грубо говоря, сущность разумна настолько, насколько ее действия могут привести к получению желаемого при условии, что желание было воспринято.

Эволюционные корни

Возьмем самую обыкновенную бактерию, например E. coli. У нее имеется полдесятка жгутиков – длинных тонких, как волоски, усиков, вращающихся у основания по часовой или против часовой стрелки. (Этот двигатель сам по себе потрясающая штука, но сейчас речь не о нем.) Плавая в жидкости у себя дома – в нижнем отделе вашего кишечника, – E. coli вращает жгутики то по часовой стрелке и «пританцовывает» на месте, то против, отчего они сплетаются в своего рода пропеллер, и бактерия плывет по прямой. Таким образом, E. coli может перемещаться произвольным образом – то плыть, то останавливаться, – что позволяет ей находить и потреблять глюкозу, вместо того чтобы оставаться неподвижной и погибнуть от голода.

Если бы на этом все заканчивалось, мы не назвали бы E. coli сколько-нибудь разумной, потому что ее действия совершенно не зависели бы от среды. Она не принимала бы никаких решений, только выполняла определенные действия, встроенные эволюцией в ее гены. Но это не все. Если E. coli ощущает увеличение концентрации глюкозы, то дольше плывет и меньше задерживается на месте, а чувствуя меньшую концентрацию глюкозы – наоборот. Таким образом, то, что она делает (плывет к глюкозе), повышает ее шансы достичь желаемого (по всей видимости, больше глюкозы), причем она действует с опорой на воспринимаемое (увеличение концентрации глюкозы).

Возможно, вы думаете: «Но ведь и такое поведение встроила в ее гены эволюция! Как это делает ее разумной?» Такое направление мысли опасно, поскольку и в ваши гены эволюция встроила базовую конструкцию мозга, но вы едва ли станете отрицать собственную разумность на этом основании. Дело в том, что нечто заложенное эволюцией в гены E. coli, как и в ваши, представляет собой механизм изменения поведения бактерии под влиянием внешней среды. Эволюция не знает заранее, где будет глюкоза или ваши ключи, поэтому организм, наделенный способностью найти их, получает еще одно преимущество.

Разумеется, E. coli не гигант мысли. Насколько мы знаем, она не помнит, где была, и если переместится из точки А в точку Б и не найдет глюкозы, то, скорее всего, просто вернется в А. Если мы создадим среду, где привлекательное увеличение концентрации глюкозы ведет к месту содержания фенола (яда для E. coli), бактерия так и будет следовать вслед за ростом концентрации. Она совершенно не учится. У нее нет мозга, за все отвечает лишь несколько простых химических реакций.

Огромным шагом вперед стало появление потенциала действия – разновидности электрической сигнализации, возникшей у одноклеточных организмов около 1 млрд лет назад. Впоследствии многоклеточные организмы выработали специализированные клетки, нейроны, которые с помощью электрических потенциалов быстро – со скоростью до 120 м/с, или 430 км/ч – передают сигналы в организме. Связи между нейронами называются синапсами. Сила синаптической связи определяет меру электрического возбуждения, проходящего от одного нейрона к другому. Изменяя силу синаптических связей, животные учатся[11]. Обучаемость дает громадное эволюционное преимущество, поскольку позволяет животному адаптироваться к широкому спектру условий. Кроме того, обучаемость ускоряет темп самой эволюции.

Первоначально нейроны были сгруппированы в нервные узлы, которые распределялись по всему организму и занимались координацией деятельности, скажем, питания и выделения, или согласованным сокращением мышечных клеток в определенной области тела. Изящные пульсации медузы – результат действия нервной сети. У медузы нет мозга.

Мозг возник позднее, вместе со сложными органами чувств, такими как глаза и уши. Через несколько сот миллионов лет после появления медузы с ее нервными узлами появились мы, люди, существа с большим головным мозгом – 100 млрд (1011) нейронов и квадриллион (1015) синапсов. Медленное в сравнении с электрическими цепями «время цикла» в несколько миллисекунд на каждое изменение состояния является быстрым по сравнению с большинством биологических процессов. Человеческий мозг часто описывается своими владельцами как «самый сложный объект во Вселенной», что, скорее всего, неверно, но хорошее оправдание тому факту, что мы до сих пор очень слабо представляем себе, как он работает. Мы очень много знаем о биохимии нейронов и синапсов в анатомических структурах мозга, но о нейронной реализации когнитивного уровня – обучении, познании, запоминании, мышлении, планировании, принятии решений и т. д. – остается по большей части гадать[12]. (Возможно, это изменится с углублением нашего понимания ИИ или создания все более точных инструментов измерения мозговой активности.) Итак, читая в СМИ, что такое-то средство реализации ИИ «работает точно так же, как человеческий мозг», можно подозревать, что это чье-то предположение или чистый вымысел.

В сфере сознания мы в действительности не знаем ничего, поэтому и я ничего не стану об этом говорить. Никто в сфере ИИ не работает над наделением машин сознанием, никто не знает, с чего следовало бы начинать такую работу, и никакое поведение не имеет в качестве предшествующего условия сознание. Допустим, я даю вам программу и спрашиваю: «Представляет ли она угрозу для человечества?» Вы анализируете код и видите – действительно, если его запустить, код составит и осуществит план, результатом которого станет уничтожение человеческой расы, как шахматная программа составила и осуществила бы план, в результате которого смогла бы обыграть любого человека. Предположим далее, что я говорю, что этот код, если его запустить, еще и создает своего рода машинное сознание. Изменит ли это ваш прогноз? Ни в малейшей степени. Это не имеет совершенно никакого значения[13]. Ваш прогноз относительно его действия останется точно таким же, потому что основывается на коде. Все голливудские сюжеты о том, как машины таинственным образом обретают сознание и проникаются ненавистью к людям, упускают из вида главное: важны способности, а не осознанность.

У мозга есть важное когнитивное свойство, которое мы начинаем понимать, а именно – система вознаграждения. Это интересная сигнальная система, основанная на дофамине, которая связывает с поведением положительные и отрицательные стимулы. Ее действие открыл шведский нейрофизиолог Нильс-Аке Хилларп и его сотрудники в конце 1950-х гг. Она заставляет нас искать положительные стимулы, например сладкие фрукты, повышающие уровень дофамина; она же заставляет нас избегать отрицательные стимулы, скажем, опасность и боль, снижающие уровень дофамина. В каком-то смысле она действует так же, как механизм поиска глюкозы у бактерии E. coli, но намного сложнее. Система вознаграждения обладает «встроенными» методами обучения, так что наше поведение со временем становится более эффективным в плане получения вознаграждения. Кроме того, она делает возможным отложенное вознаграждение, благодаря чему мы учимся желать, например, деньги, обеспечивающие отдачу в будущем, а не сию минуту. Мы понимаем, как работает система вознаграждения в нашем мозге, в том числе потому, что она напоминает метод обучения с подкреплением, разработанный в сфере исследования ИИ, для которого у нас имеется основательная теория[14].

С эволюционной точки зрения мы можем считать систему вознаграждения мозга аналогом механизма поиска глюкозы у E. coli, способом повышения эволюционной приспособленности. Организмы, более эффективные в поиске вознаграждения – а именно: в нахождении вкусной пищи, избегании боли, занятии сексом и т. д., – с большей вероятностью передают свои гены потомству. Организму невероятно трудно решить, какое действие в долгосрочной перспективе скорее всего приведет к успешной передаче его генов, поэтому эволюция упростила нам эту задачу, снабдив встроенными указателями.

Однако эти указатели несовершенны. Некоторые способы получения вознаграждения снижают вероятность того, что наши гены будут переданы потомству. Например, принимать наркотики, пить огромное количество сладкой газировки и играть в видеоигры по 18 часов в день представляется контрпродуктивным с точки зрения продолжения рода. Более того, если бы вы получили прямой электрический доступ к своей системе вознаграждения, то, по всей вероятности, занимались бы самостимуляцией без конца, пока не умерли бы[15].

Рассогласование вознаграждающих сигналов и эволюционной необходимости влияет не только на отдельных индивидов. На маленьком острове у берегов Панамы живет карликовый трехпалый ленивец, как оказалось, страдающий зависимостью от близкого к валиуму вещества в своем рационе из мангровых листьев и находящийся на грани вымирания[16]. Таким образом, целый вид может исчезнуть, если найдет экологическую нишу, где сможет поощрять свою систему вознаграждения нездоровым образом.

Впрочем, за исключением подобных случайных неудач, обучение максимизации вознаграждения в естественной среде обычно повышает шансы особи передать свои гены и пережить изменения окружающей среды.

Эволюционный ускоритель

Обучение способствует не только выживанию и процветанию. Оно еще и ускоряет эволюцию. Каким образом? В конце концов, обучение не меняет нашу ДНК, а эволюция заключается в изменении ДНК с поколениями. Предположение, что между обучением и эволюцией существует связь, независимо друг от друга высказали в 1896 г. американский психолог Джеймс Болдуин[17] и британский этолог Конви Ллойд Морган[18], но в те времена оно не стало общепринятым.

Эффект Болдуина, как его теперь называют, можно понять, если представить, что эволюция имеет выбор между созданием инстинктивного организма, любая реакция которого зафиксирована заранее, и адаптивного организма, который учится, как ему действовать. Теперь предположим, для примера, что оптимальный инстинктивный организм можно закодировать шестизначным числом, скажем, 472116, тогда как в случае адаптивного организма эволюция задает лишь 472, и организм сам должен заполнить пробел путем обучения на протяжении жизни. Очевидно, если эволюция должна позаботиться лишь о выборе трех первых цифр, ее работа значительно упрощается; адаптивный организм, получая через обучение последние три цифры, за одну жизнь делает то, на что эволюции потребовалось бы много поколений. Таким образом, способность учиться позволяет идти эволюционно коротким путем при условии, что адаптивный организм сумеет выжить в процессе обучения. Компьютерное моделирование свидетельствует о реальности эффекта Болдуина[19]. Влияние культуры лишь ускоряет процесс, потому что организованная цивилизация защищает индивидуальный организм, пока тот учится, и передает ему информацию, которую в ином случае индивиду пришлось бы добывать самостоятельно.

Описание эффекта Болдуина является увлекательным, но неполным: оно предполагает, что обучение и эволюция обязательно работают в одном направлении, а именно, что направление обучения, вызванное любым сигналом внутренней обратной связи в организме, с точностью соответствует эволюционной приспособленности. Как мы видели на примере карликового трехпалого ленивца, это не так. В лучшем случае встроенные механизмы обучения дают лишь самое общее представление о долгосрочных последствиях любого конкретного действия для эволюционной приспособленности. Более того, возникает вопрос: как вообще возникла система вознаграждения? Ответ: разумеется, в процессе эволюции, усвоившей тот механизм обратной связи, который хоть сколько-нибудь соответствовал эволюционной приспособленности[20]. Очевидно, механизм обучения, который заставлял бы организм удаляться от потенциальных брачных партнеров и приближаться к хищникам, не просуществовал бы долго.

Таким образом, мы должны поблагодарить эффект Болдуина за то, что нейроны, с их способностью к обучению и решению задач, широко распространены в животном царстве. В то же время важно понимать, что эволюции на самом деле все равно, есть у вас мозг или интересные мысли. Эволюция считает вас лишь агентом, то есть кем-то, кто действует. Такие достославные характеристики интеллекта, как логическое рассуждение, целенаправленное планирование, мудрость, остроумие, воображение и креативность, могут быть принципиально важны для разумности агента, а могут и не быть. Идея ИИ невероятно захватывает в том числе потому, что предлагает возможный путь к пониманию этих механизмов. Может быть, нам удастся узнать, как эти характеристики интеллекта делают возможным разумное поведение, а также почему без них невозможно достичь по-настоящему разумного поведения.

Рациональность для одного

С самых истоков древнегреческой философии концепция разума связывалась со способностью воспринимать, мыслить логически и действовать успешно[21]. В течение столетий эта концепция расширилась и уточнилась.

Аристотель среди прочих изучал понятие успешного рассуждения – методы логической дедукции, которые ведут к верному выводу при условии верной предпосылки. Он также исследовал процесс принятия решения о том, как действовать, иногда называемый практическим рассуждением. Философ считал, что предполагается логическое заключение о том, что определенная последовательность действий приводит к желаемой цели[22]:

Решение наше касается не целей, а средств, ведь врач принимает решения не о том, будет ли он лечить, и ритор – не о том, станет ли он убеждать… но, поставив цель, он заботится о том, каким образом и какими средствами ее достигнуть; и если окажется несколько средств, то прикидывают, какое самое простое и наилучшее; если же достижению цели служит одно средство, думают, как ее достичь при помощи этого средства и что будет средством для этого средства, покуда не дойдут до первой причины, находят которую последней… И, если наталкиваются на невозможность [достижения], отступаются (например, если нужны деньги, а достать их невозможно); когда же это представляется возможным, тогда и берутся за дело[23].

Можно сказать, что этот фрагмент задает направление следующих 2000 лет западной мысли о рациональности. В нем говорится, что «цель» – то, чего хочет данный человек, – фиксирована и задана, а также что рациональным является такое действие, которое, согласно логическому выводу о последовательности действий, самым «простым и наилучшим» образом приводит к цели.

Предположение Аристотеля выглядит разумно, но не исчерпывает рационального поведения. Главное, в нем отсутствует неопределенность. В реальном мире наблюдается склонность реальности вторгаться в наши действия, и лишь немногие из них или их последовательностей гарантированно достигают поставленной цели. Например, я пишу это предложение в дождливое воскресенье в Париже, а во вторник в 14:15 из аэропорта Шарля де Голля вылетает мой самолет в Рим. От моего дома до аэропорта около 45 минут, и я планирую выехать в аэропорт около 11:30, то есть с большим запасом, но из-за этого мне, скорее всего, придется не меньше часа просидеть в зоне вылета. Значит ли это, что я гарантированно успею на рейс? Вовсе нет. Может возникнуть ужасная пробка или забастовка таксистов; такси, в котором я еду, может попасть в аварию; или водителя задержат за превышение скорости и т. д. Я мог бы выехать в аэропорт в понедельник, на целый день раньше. Это значительно снизило бы шанс опоздать на рейс, но перспектива провести ночь в зоне вылета меня не привлекает. Иными словами, мой план включает компромисс между уверенностью в успехе и стоимостью этой уверенности. План приобретения дома предполагает аналогичный компромисс: купить лотерейный билет, выиграть миллион долларов, затем купить дом. Этот план является самым «простым и наилучшим» путем к цели, но маловероятно, чтобы он оказался успешным. Однако между легкомысленным планом покупки дома и моим трезвым и обоснованным планом приезда в аэропорт разница лишь в степени риска. Оба представляют собой ставку, но одна ставка выглядит более рациональной.

Оказывается, ставка играет главную роль в обобщении предположения Аристотеля с тем, чтобы включить неопределенность. В 1560-х гг. итальянский математик Джероламо Кардано разработал первую математически точную теорию вероятности, используя в качестве основного примера игру в кости. (К сожалению, эта работа была опубликована лишь в 1663 г.[24]) В XVII в. французские мыслители, в том числе Антуан Арно и Блез Паскаль, начали – разумеется, в интересах математики – изучать вопрос рационального принятия решений в азартных играх[25]. Рассмотрим следующие две ставки:

А: 20 % вероятности выиграть $10.

Б: 5 % вероятности выиграть $100.

Предложение, выдвинутое математиками, скорее всего, совпадает с решением, которое приняли бы вы: сравнить ожидаемую ценность ставок, то есть среднюю сумму, которую можно рассчитывать получить с каждой ставки. В случае А ожидаемая ценность составляет 20 % от $10, или $2. В случае Б – 5 % от $100, или $5. Так что, согласно этой теории, ставка Б лучше. В теории есть смысл, поскольку, если делать одну и ту же ставку снова и снова, игрок, следующий правилу, в конце концов выиграет больше, чем тот, кто ему не следует.

В XVIII в. швейцарский математик Даниил Бернулли заметил, что это правило, по-видимому, не работает для больших денежных сумм[26]. Рассмотрим, например, такие две ставки:

А: 100 % вероятности получить $10 000 000 (ожидаемая ценность $10 000 000).

Б: 1 % вероятности получить $1 000 000 100 (ожидаемая ценность $10 000 001).