Идея ИИ уходит корнями в седую древность, но ее «официальным» годом рождения считается 1956 г. Два молодых математика, Джон Маккарти и Марвин Минский, убедили Клода Шеннона, успевшего прославиться как изобретатель теории информации, и Натаниэля Рочестера, разработчика первого коммерческого компьютера IBM, вместе с ними организовать летнюю программу в Дартмутском колледже. Цель формулировалась следующим образом:
Исследование будет вестись на основе предположения, что любой аспект обучения или любой другой признак интеллекта можно, теоретически, описать настолько точно, что возможно будет создать машину, его воспроизводящую. Будет предпринята попытка узнать, как научить машины использовать язык, формировать абстрактные понятия и концепции, решать задачи такого типа, которые в настоящее время считаются прерогативой человека, и совершенствоваться. Мы считаем, что по одной или нескольким из этих проблем возможен значительный прогресс, если тщательно подобранная группа ученых будет совместно работать над ними в течение лета.
Незачем говорить, что времени потребовалось значительно больше: мы до сих пор трудимся над всеми этими задачами.
В первые лет десять после встречи в Дартмуте в разработке ИИ произошло несколько крупных прорывов, в том числе создание алгоритма универсального логического мышления Алана Робинсона[2] и шахматной программы Артура Самуэля, которая сама научилась обыгрывать своего создателя[3]. В работе над ИИ первый пузырь лопнул в конце 1960-х гг., когда начальные результаты в области машинного обучения и машинного перевода оказались не соответствующими ожиданиям. В отчете, составленном в 1973 г. по поручению правительства Великобритании, делался вывод: «Ни по одному из направлений этой сферы исследований совершенные на данный момент открытия не имели обещанных радикальных последствий»[4]. Иными словами, машины просто не были достаточно умными.
К счастью, в 11-летнем возрасте я не подозревал о существовании этого отчета. Через два года, когда мне подарили программируемый калькулятор Sinclair Cambridge, я просто захотел сделать его разумным. Однако при максимальной длине программы в 36 строк «Синклер» был недостаточно мощным для ИИ человеческого уровня. Не смирившись перед неудачей, я добился доступа к гигантскому суперкомпьютеру CDC 6600[5] в Королевском колледже Лондона и написал шахматную программу – стопку перфокарт 60 см высотой. Не слишком толковую, но это было не важно. Я знал, чем хочу заниматься.
К середине 1980-х гг. я стал профессором в Беркли, а ИИ переживал бурное возрождение благодаря коммерческому потенциалу так называемых экспертных систем. Второй «ИИ-пузырь» лопнул, когда оказалось, что эти системы не отвечают многим задачам, для которых предназначены. Опять-таки машины просто не были достаточно умными. В сфере ИИ настал ледниковый период. Мой курс по ИИ в Беркли, ныне привлекающий 900 с лишним студентов, в 1990 г. заинтересовал всего 25 слушателей.
Сообщество разработчиков ИИ усвоило урок: очевидно, чем умнее, тем лучше, но, чтобы этого добиться, нам нужно покорпеть над основами. Появился выраженный уклон в математику. Были установлены связи с давно признанными научными дисциплинами: теорией вероятности, статистикой и теорией управления. Зерна сегодняшнего прогресса были посажены во время того «ледниковья», в том числе начальные разработки крупномасштабных систем вероятностной логики и того, что стало называться глубоким обучением.
Около 2011 г. методы глубокого обучения начали демонстрировать огромные достижения в распознавании речи и визуальных объектов, а также машинного перевода – трех важнейших нерешенных проблем в исследовании ИИ. В 2016 и 2017 гг. программа AlphaGo, разработанная компанией DeepMind, обыграла бывшего чемпиона по игре го Ли Седоля и действующего чемпиона Кэ Цзе. По ранее сделанным оценкам некоторых экспертов, это событие могло произойти не раньше 2097 г. или вообще никогда[6].
Теперь ИИ почти ежедневно попадает на первые полосы мировых СМИ. Созданы тысячи стартапов, питаемые потоками венчурного финансирования. Миллионы студентов занимаются на онлайн-курсах по ИИ и машинному обучению, а эксперты в этой области зарабатывают миллионы долларов. Ежегодные инвестиции из венчурных фондов, от правительств и крупнейших корпораций исчисляются десятками миллиардов долларов – за последние пять лет в ИИ вложено больше денег, чем за всю предшествующую историю этой области знания. Достижения, внедрение которых не за горами, например машины с полным автопилотом и интеллектуальные персональные помощники, по всей видимости, окажут заметное влияние на мир в следующем десятилетии. Огромные экономические и социальные выгоды, которые обещает ИИ, создают мощный импульс для его исследования.
Означает ли этот стремительный прогресс, что нас вот-вот поработят машины? Нет. Прежде чем мы получим нечто, напоминающее машины со сверхчеловеческим разумом, должно произойти немало кардинальных прорывов.
Научные революции печально знамениты тем, что их трудно предсказать. Чтобы это оценить, бросим взгляд на историю одной из научных областей, способной уничтожить человечество, – ядерной физики.
В первые годы XX в., пожалуй, не было более видного физика-ядерщика, чем Эрнест Резерфорд, первооткрыватель протона, «человек, который расщепил атом» (рис. 2а). Как и его коллеги, Резерфорд долгое время знал о том, что ядра атомов заключают в себе колоссальную энергию, но разделял господствующее убеждение, что овладеть этим источником энергии невозможно.
11 сентября 1933 г. Британская ассоциация содействия развитию науки проводила ежегодное собрание в Лестере. Лорд Резерфорд открыл вечернее заседание. Как и прежде, он остудил жар надежд на атомную энергию: «Всякий, кто ищет источник энергии в трансформации атомов, гонится за миражом». На следующее утро речь Резерфорда была напечатана в лондонской газете Times (рис. 2б).
Лео Силард (рис. 2в), венгерский физик, только что бежавший из нацистской Германии, остановился в лондонском отеле «Империал» на Рассел-сквер. За завтраком он прочитал статью в The Times. Размышляя над речью Резерфорда, он вышел пройтись и открыл нейтронную цепную реакцию[7]. «Неразрешимая» проблема высвобождения ядерной энергии была решена, по сути, менее чем за 24 часа. В следующем году Силард подал секретную заявку на патент ядерного реактора. Первый патент на атомное оружие был выдан во Франции в 1939 г.
Мораль этой истории – держать пари на человеческую изобретательность безрассудно, особенно если на кону наше будущее. В сообществе разработчиков ИИ складывается своего рода культура отрицания, доходящая даже до отрицания возможности достижения долгосрочных целей ИИ. Как если бы водитель автобуса, в салоне которого сидит все человечество, заявил: «Да, я делаю все возможное, чтобы мы въехали на вершину горы, но, уверяю вас, бензин кончится прежде, чем мы туда попадем!»
Я не утверждаю, что успех в создании ИИ гарантирован, и считаю очень маловероятным, что это случится в ближайшие годы. Представляется тем не менее разумным подготовиться к самой возможности. Если все сложится хорошо, это возвестит золотой век для человечества, но мы должны взглянуть правде в лицо: мы собираемся использовать нечто намного более могущественное, чем люди. Как добиться, чтобы оно никогда, ни при каких условиях не взяло верх над нами?
Чтобы составить хотя бы какое-то представление о том, с каким огнем мы играем, рассмотрим алгоритмы выбора контента в социальных сетях. Они не особо интеллектуальны, но способны повлиять на весь мир, поскольку оказывают непосредственное воздействие на миллиарды людей. Обычно подобные алгоритмы направлены на максимизацию вероятности того, что пользователь кликнет мышью на представленные элементы. Решение простое – демонстрировать те элементы, которые пользователю нравится кликать, правильно? Неправильно. Решение заключается в том, чтобы менять предпочтения пользователя, делая их более предсказуемыми. Более предсказуемому пользователю можно подсовывать элементы, которые он с большой вероятностью кликнет, повышая прибыль таким образом. Люди с радикальными политическими взглядами отличаются большей предсказуемостью в своем выборе. (Вероятно, имеется и категория ссылок, на которые с высокой долей вероятности станут переходить убежденные центристы, но нелегко понять, что в нее входит.) Как любая рациональная сущность, алгоритм обучается способам изменения своего окружения – в данном случае предпочтений пользователя, – чтобы максимизировать собственное вознаграждение[8]. Возможные последствия включают возрождение фашизма, разрыв социальных связей, лежащих в основе демократий мира, и, потенциально, конец Европейского союза и НАТО. Неплохо для нескольких строчек кода, пусть и действовавшего с небольшой помощью людей. Теперь представьте, на что будет способен действительно интеллектуальный алгоритм.
Историю развития ИИ движет одно-единственное заклинание: «Чем интеллектуальнее, тем лучше». Я убежден, что это ошибка, и дело не в туманных опасениях, что нас превзойдут, а в самом нашем понимании интеллекта.
Понятие интеллекта является определяющим для нашего представления о самих себе – поэтому мы называем себя Homo sapiens, или «человек разумный». По прошествии двух с лишним тысяч лет самопознания мы пришли к пониманию интеллекта, которое может быть сведено к следующему утверждению:
Люди разумны настолько, насколько можно ожидать, что наши действия приведут к достижению поставленных нами целей.
Все прочие характеристики разумности – восприятие, мышление, обучение, изобретательство и т. д. – могут быть поняты через их вклад в нашу способность успешно действовать. С самого начала разработки ИИ интеллектуальность машин определялась аналогично:
Машины разумны настолько, насколько можно ожидать, что их действия приведут к достижению поставленных ими целей.
Поскольку машины, в отличие от людей, не имеют собственных целей, мы говорим им, каких целей нужно достичь. Иными словами, мы строим оптимизирующие машины, ставим перед ними цели, и они принимаются за дело.
Этот общий подход не уникален для ИИ. Он снова и снова применяется в технологических и математических схемах нашего общества. В области теории управления, которая разрабатывает системы управления всем, от авиалайнеров до инсулиновых помп, работа системы заключается в минимизации функции издержек, обычно дающих некоторое отклонение от желаемого поведения. В сфере экономики механизмы политики призваны максимизировать пользу для индивидов, благосостояние групп и прибыль корпораций[9]. В исследовании операций, направлении, решающем комплексные логистические и производственные проблемы, решение максимизирует ожидаемую сумму вознаграждений во времени. Наконец, в статистике обучающиеся алгоритмы строятся с таким расчетом, чтобы минимизировать ожидаемую функцию потерь, определяющую стоимость ошибки прогноза.
Очевидно, эта общая схема, которую я буду называть стандартной моделью, широко распространена и чрезвычайно действенна. К сожалению, нам не нужны машины, интеллектуальные в рамках стандартной модели.
На оборотную сторону стандартной модели указал в 1960 г. Норберт Винер, легендарный профессор Массачусетского технологического института и один из ведущих математиков середины XX в. Винер только что увидел, как шахматная программа Артура Самуэля научилась играть намного лучше своего создателя. Этот опыт заставил его написать провидческую, но малоизвестную статью «Некоторые нравственные и технические последствия автоматизации»[10]. Вот как он формулирует главную мысль:
Если мы используем для достижения своих целей механического посредника, в действие которого не можем эффективно вмешаться… нам нужна полная уверенность в том, что заложенная в машину цель является именно той целью, к которой мы действительно стремимся.
«Заложенная в машину цель» – это те самые задачи, которые машины оптимизируют в стандартной модели. Если мы вводим ошибочные цели в машину, более интеллектуальную, чем мы сами, она достигнет цели и мы проиграем. Описанная мною деградация социальных сетей – просто цветочки, результат оптимизации неверной цели во всемирном масштабе, в сущности, неинтеллектуальным алгоритмом. В главе 5 я опишу намного худшие результаты.
Этому не приходится особенно удивляться. Тысячелетиями мы знали, как опасно получить именно то, о чем мечтаешь. В любой сказке, где герою обещано исполнить три желания, третье всегда отменяет два предыдущих.
В общем представляется, что движение к созданию сверхчеловеческого разума не остановить, но успех может обернуться уничтожением человеческой расы. Однако не все потеряно. Мы должны найти ошибки и исправить их.
Проблема заключается в самом базовом определении ИИ. Мы говорим, что машины разумны, поскольку можно ожидать, что их действия приведут к достижению их целей, но не имеем надежного способа добиться того, чтобы их цели совпадали с нашими.
Что, если вместо того, чтобы позволить машинам преследовать их цели, потребовать от них добиваться наших целей? Такая машина, если бы ее можно было построить, была бы не только
О проекте
О подписке