23 января 2019 г. я выступал в Нью-Йорке перед аудиторией из 700 топ-менеджеров, активно применяющих различные алгоритмы, технологии и аналитику для повышения эффективности маркетинговых мероприятий. Я признал, сколь многое нам дали интернет, поисковики, интернет-торговля, мобильная связь и соцсети. И отметил, что на данный момент пять самых дорогостоящих компаний Америки (Amazon, Apple, Google, Facebook, Microsoft) являются первопроходцами и лидерами в применении данных, алгоритмов, сетей и различных технологий.
Новейшие достижения в сфере искусственного интеллекта, а также технология 5G, увеличивающая скорость подключений и охват устройств, явно говорят о том, что грядет эра новых возможностей и роста благосостояния. Однако мы все время кое-что упускаем, и тучи уже сгущаются. С одной стороны, технологии анализа данных открывают новые горизонты и пути получения прибыли. С другой стороны, ими все чаще злоупотребляют, что ведет к утрате доверия, поляризации общества и усилению неравенства.
Будучи главами крупных компаний, мы должны задуматься и признать обратную сторону нашей маниакальной приверженности цифрам. За примерами далеко ходить не нужно.
Amazon, которая оценивается почти в триллион долларов и принадлежит одному из богатейших людей в мире, явно перегнула палку, требуя от государства финансовых льгот на строительство второй штаб-квартиры в Нью-Йорке. Только негативная реакция властей и жителей заставила компанию отказаться от этой идеи.
По всему миру имели место случаи вредоносного использования Facebook и YouTube. Но обе компании слишком долго не признавали этого и не принимали никаких мер, чем подорвали доверие общественности.
И такое случается не только с технологическими гигантами.
Руководители Wells Fargo в погоне за выполнением плана по открытию счетов действовали во вред своим клиентам. Врачи Мемориального онкологического центра имени Слоуна-Кеттеринга были возмущены тем, что некоторые из их коллег имеют дополнительную финансовую заинтересованность в результатах проводимых клинических испытаний. Ведущую консалтинговую компанию McKinsey[2] обвинили в сотрудничестве с криминальным миром и продвижении небезопасной продукции[3].
В погоне за успехом и улучшением показателей мы не замечали побочных негативных эффектов, вызванных пренебрежением ко второй – человеческой – составляющей этого уравнения.
В моем докладе «Время оптимизации ради граждан» я предложил пересмотреть наш подход и вспомнить, что клиенты являются не только потребителями, но и гражданами. Как говорит писатель и журналист Эли Визель, прошедший холокост, мыслить нужно шире, а чувствовать – глубже.
Тот доклад задел нужные струны. Повсюду люди постепенно стали осознавать, что во времена, когда всем руководят данные и алгоритмы, нужно быть начеку. Иначе за обилием цифр мы рискуем потерять смысл.
90 % данных, имеющихся сегодня в мире, были созданы за последние два года[4]. Мы производим примерно 2,5 квинтиллиона байт информации ежедневно[5]. В 2017 г. компании США потратили на дата-центры 18 миллиардов долларов – это вдвое больше, чем в 2016-м[6]. А в 2020 г., как ожидается, на аналитику данных в мире уйдет 203 миллиарда долларов. Для сравнения, в 2016 г. эта цифра составила 130 миллиардов[7].
И это лишь несколько примеров того, что в паре «таблички – живая история» первые доминируют.
Есть много причин, по которым компании с головой кидаются в использование данных. Не последнюю роль играет появление сложнейших технологий, позволяющих очень быстро обрабатывать информацию и делать из нее выводы. Но есть и другие объяснения:
● данных очень много;
● в отличие от чувств, они не такие запутанные;
● данные точны, чувства неявны;
● данные – универсальный язык, понятный всем и везде;
● как показывает пример Google и Facebook с их мощнейшими предиктивными алгоритмами, использование данных приносит прибыль;
● данные можно очень эффектно визуализировать.
Все это, конечно, не означает, что данные – это плохо. Неправильно было бы считать, что таблички – зло, а история – благо. Обе составляющие жизненно необходимы бизнесу. Более того, именно способность находить баланс между ними выводит компании в лидеры.
Проблема в том, что слишком велик соблазн фокусироваться только на данных, и баланс сразу смещается. Ведь данные помогают обосновать наши решения, просчитать и снизить риски. Благодаря им мы постигаем поведение потребителей и на основе этого разрабатываем наши продукты и услуги. При помощи данных компании выживают и зарабатывают деньги.
Но это заставляет нас ошибочно полагать, будто данные – все, что требуется для успеха. И мы теряем критичные для процветания бизнеса гибкость, вдохновение, нестандартность мышления. Данные должны и могут быть наполнены смыслом, и использовать их нужно с умом. Нам следует прибегать к ним не только чтобы выразить нечто в цифрах, повысить эффективность и производительность. Но и для того, чтобы задуматься над другими, общечеловеческими вопросами. Что результаты опроса сотрудников говорят об их морали и готовности оставаться в компании еще длительное время? Какие модели поведения поставщиков выявляют применяемые нами алгоритмы и как эти модели связаны с текущими проблемами и вспыхивающими время от времени конфликтами?
В компании, полагающейся не только на данные, но задумывающейся и о смыслах, корпоративные политики и программы не должны быть основаны на цифрах и могут даже вступать с ними в противоречие. Например, статистика требует от компании сократить персонал на 10 %, чтобы сохранить показатели прибыли. Но такой шаг деморализует сотрудников. Более сознательным решением будет снизить другие расходы, но сохранить рабочие места и позитивный настрой в коллективе.
Конечно, это очень простой пример. Но он хорошо показывает необходимость в равной степени ориентироваться и на математику, и на здравый смысл. Чтобы этому научиться, для начала рассмотрим, что мы понимаем под математикой и смыслом, в чем их различие и когда они нужны.
Если говорить простым языком, математика в нашем случае – это все данные, проходящие через компанию, а смысл – неосязаемые чувства и представления, связанные с людьми, продуктами, услугами и самими организациями. Чуть усложняя, поясним: математика в этом контексте имеет различные формы – это и алгоритмы, и искусственный интеллект, и данные из социальных сетей, и т. д. Смысл тоже может быть представлен очень по-разному – от миссии компании до значимости бренда и того, как сами сотрудники видят свою компанию.
Организации всегда пользовались данными – проводили опросы, устраивали фокус-группы, верстали бюджеты. Но благодаря скачку в развитии технологий теперь данные просто повсюду. Ниже приведем примеры, поясняющие, почему данные называют «новой нефтью» и почему они столь ценны для бизнеса любого типа.
● Результаты аналитики управляют поведением потребителей. В 70 % случаев подписчики Netflix выбирают контент для просмотра, руководствуясь рекомендациями платформы. Треть всех покупок на Amazon формируется на основе подсказок о том, что еще выбирали покупатели, просматривавшие те же товары, что и вы[8]. Аналитика данных открывает небывалые возможности – от повышения результативности маркетинга до разработки идей новых продуктов.
● Аналитика дает толчок непрерывному совершенствованию. Компании могут сравнивать текущие ключевые показатели со своими прежними результатами, а также с цифрами конкурентов и таким образом получать систему контрольных значений и разрабатывать планы по улучшению работы. Также, используя результаты аналитики, компания может на вопросы сотрудников или партнеров давать конкретные ответы, основанные на объективных данных.
● Данные обеспечивают конкурентное преимущество. Сейчас разница между качеством продукции разных производителей все уменьшается. Клиенты сравнивают цены, что заставляет компании идти на снижение маржинальности. Данные же приносят новые конкурентные преимущества и способы монетизации. Три из пяти самых дорогостоящих компаний Америки (Amazon, Facebook, Alphabet/Google) обязаны своим успехом тому, что благодаря огромным массивам данных могут быстро и с небольшими затратами предлагать пользователям персонализированные сервисы[9]. Благодаря данным компании при небольших затратах могут повышать качество и скорость работы.
Теперь поговорим о смыслах. Они менее осязаемы, чем цифры, но не менее важны для успеха компании. Ниже приведем примеры явлений из данной категории и вопросы, с ними связанные.
● Репутация бренда. Наш продукт дешевый или качественный? Надежный или нет? Бренд вызывает доверие и лояльность или воспринимается как утилитарный?
● Мнение клиентов о сервисе компании. Клиенты считают сотрудников обслуживающих подразделений дружелюбными и отзывчивыми или же холодными и нудными? Ваши продавцы и специалисты сервисных служб работают над выстраиванием долговременных отношений с клиентами или же отношения возникают и поддерживаются только в момент обращения клиента?
● Миссия и ценности компании. Компания известна своей последовательной системой убеждений и принципов либо считается аморальной и переменчивой? Способствует ли организация тому, чтобы ее окружение, отрасль и наш мир в целом становились лучше, или заботится только о личной выгоде?
● Восприятие компании сотрудниками. Считают ли сотрудники, что компания дает им возможность учиться и расти или же только эксплуатирует их навыки и труд? Чувствуют ли они, что получают справедливое вознаграждение, или считают, что компания на них экономит? Считают ли они себя вовлеченными, видят ли себя частью организации или же изолированными наемными работниками?
● Истинное значение данных. Помимо того, что лежит на поверхности, о чем еще говорят все эти факты и цифры? Да, прибыль в июне выросла на 12 %, но в чем причина? Это случайность или тренд, на который нужно обратить внимание? Сработала новая рекламная кампания или программа премирования продавцов?
И это лишь некоторые примеры. Смысловая часть уравнения может принимать множество форм. Это и то, как руководители общаются с подчиненными. Например, проявляют ли уважение и эмпатию? И то, как генеральный директор выступает перед отраслевыми аналитиками. И то, как рассчитываются и выплачиваются премии. Смысл может проявиться и при всестороннем анализе больших данных (Big Data) – когда цифры изучают, обсуждают и дают им толкование несколько разных специалистов. Ранее мы говорили про «таблички» и «живую историю». Смысл – составная часть истории, которую рассказывает организация.
Как говорил Марк Твен, существует ложь, наглая ложь и статистика[10]. Возможно, в этом утверждении есть забавное преувеличение для достижения большего эффекта. Но организации допускают серьезную ошибку, чрезмерно увлекаясь цифрами. И некоторые компании уже поняли это на собственном горьком опыте.
В 2012 г. Adobe отказалась от ежегодных отчетов о результатах работы персонала. По сути, компания пользовалась специальными формами с целью сбора статистических данных для оценки достижений и улучшений по массе различных параметров. Старший вице-президент Adobe по кадрам и офисам Донна Моррис сравнила сбор этой отчетности с ежегодными посещениями стоматолога. Вместо отчетов компания внедрила менее формальные, основанные на межличностном общении способы диагностики, а именно – личные встречи начальников и подчиненных, на которых результаты работы обсуждаются совместно и в более непринужденной обстановке[11].
Боб Низ, автор статьи «Как избыток данных снижает продуктивность и качество принятия решений» (How Too Much Data Can Hurt Out Productivity and Decision-Making), вышедшей в Fast Company, пишет: «Глубокое погружение в данные о том, кто покупает ваш виджет, бессмысленно, если не приводит к тому, чтобы ваши продавцы фокусировались на правильной аудитории и не тратили время на тех, кто никогда ничего у вас не купит»[12]. Низ отмечает, что люди непредсказуемы. И то, что вы собрали кучу классных данных по конкретной выборке, вовсе не означает, что вам удастся ими воспользоваться. Вы можете установить, что данная аудитория любит синий цвет. При этом, если вы начнете использовать синий в оформлении упаковки, это может и отпугнуть потребителей. Почему? Просто потому, что люди не машины. Их поведение спонтанно, противоречиво и порой не укладывается в схемы.
В 2016 г. McKinsey&Company провели опрос топ-менеджеров ведущих компаний на тему использования больших данных и аналитики. Один из респондентов – директор по управлению рисками American Express Аш Гупта – дал очень интересный ответ: «В первую очередь нам пришлось поработать над повышением качества данных. Данных у нас очень много, и порой мы не пользовались ими и не задумывались об их качестве, как должны бы»[13].
Итак, о чем нас предупреждают эти примеры?
● Взаимодействие, выстроенное на основе цифр, может быть намного менее эффективным, чем взаимодействие, в центре которого человек.
● Люди не всегда поступают так, как предсказывают результаты анализа данных.
● Качество данных бывает разное. И если оно невысоко (либо вы в нем не уверены), ваши решения будут выстроены на очень слабом основании.
Вероятнее всего, мы все чаще будем иметь дело с данными. Поэтому чрезвычайно важно постоянно напоминать себе об обратной стороне использования данных. Есть несколько причин, по которым данные продолжат завоевывать мир.
● Доступность. Сейчас данные можно получить в режиме реального времени и в более детализированном и унифицированном виде, чем когда-либо прежде. Чем проще достать информацию, например, через демографические профили пользователей сайтов или списки друзей и подписчиков в соцсетях, тем вероятнее компании захотят ею воспользоваться для получения прибыли.
● Удобство хранения и использования. Сейчас можно отследить и записать, что делает на сайте каждый посетитель в каждый момент времени, а затем связать эту информацию с другими данными об этом пользователе. Невысокие затраты на хранение при огромных возможностях разных видов вычислений обеспечивают компаниям способы зарабатывать на этих данных и черпать в них новые идеи. Мы размышляем так: у нас есть данные, мы можем вертеть их так и эдак, значит, мы должны ими воспользоваться.
● Инструмент для руководителей. Практически в каждой компании имеется набор метрик, наподобие терминалов Bloomberg, для руководителей разных уровней. Данные – это хребет, на котором держится бизнес и который влияет на все важные решения и заявления. Почитание цифр руководством ведет к тому, что все уровни организации принимают ту же модель поведения.
● Эпоха искусственного интеллекта. Подобно тому как человек учится на своем опыте, все более мощные компьютеры производят огромные массивы данных, учатся в процессе их обработки и становятся все умнее. Заложенные в программу алгоритмы предлагают решения, основанные на анализе данных и позволяющие получить прибыль. И компании при принятии решений все чаще полагаются на компьютерные алгоритмы, а не на человеческий мозг.
За годы работы я понял, что наилучший способ постигнуть смыслы, стоящие за цифрами, и извлечь прорывные идеи из данных – это придерживаться принципа, который я назвал «принцип шести “П”»: перевести, пригласить, провести параллель, помечтать, повторить, поискать в прошлом.
ПЕРЕВЕСТИ С ЯЗЫКА ДАННЫХ. Не останавливайтесь на тех фактах и цифрах, которые лежат на поверхности. Иногда, конечно, они являются именно тем, чем кажутся. Но порой могут загнать в ловушку. Поэтому, особенно если имеете дело с неоднозначными данными, посмотрите на них с разных сторон. Выдвигайте гипотезы, ищите закономерности и аномалии, предложите альтернативные трактовки полученной информации. На этом шаге вы переводите язык цифр на язык смыслов и можете понять, какая история кроется за данными.
ПРИГЛАСИТЬ РАЗНЫХ УЧАСТНИКОВ. Аналитики, конечно, ключевые участники, но расширьте рабочую группу, занимающуюся анализом данных. Вовлекая специалистов с различными навыками и точками зрения, вы, скорее всего, получите расширенную трактовку данных. Например, аналитики скажут: «Количество подписчиков нашего сайта выросло за месяц на 15 %». Маркетологи добавят: «Возможно, причина в невероятно успешной программе выдачи лицензии на наш бренд другой компании, которая началась в прошлом месяце». Специалисты отдела кадров отметят: «Каждый раз с ростом числа подписчиков сайта мы начинаем получать больше резюме от соискателей». О важности изучения мнений разных сторон говорят примеры таких скандальных реклам, как фото модели в черном свитере Gucci, напоминающем пародию на внешность афроамериканцев, или ролик Pepsi с Кендалл Дженнер, нацеленный на непонятно какую аудиторию[15].
ПРОВЕСТИ ПАРАЛЛЕЛЬ С ДРУГИМИ СОБЫТИЯМИ И ЗАКОНОМЕРНОСТЯМИ ИНОГО УРОВНЯ. Связаны ли как-то данные с новыми зарождающимися тенденциями, серьезно влияющими на вашу отрасль? Имеет ли отношение найденная вами информация к новому продукту, который выводит на рынок ваш конкурент? Проведение таких параллелей помогает вам сделать еще один шаг вперед на пути к пониманию данных. И определить, например, будут ли цифры, которые вы видите, иметь какое-либо значение в долгосрочной перспективе или они важны только сейчас. Свидетельствуют ли они о завершении или начале тренда.
ПОМЕЧТАТЬ, ЧТОБЫ НАЙТИ РЕШЕНИЕ.
О проекте
О подписке