Что по-прежнему оставляет открытым вопрос о том, на какие стандарты ориентируются ученые, когда выносят оценку работе своих коллег. Хорошая наука, оригинальная работа всегда выходят за пределы общепринятых мнений, всегда содержат элемент несогласия с ортодоксальными взглядами. Как же в таком случае выразители ортодоксальных взглядов могут оценить их по достоинству?
Полани предположил, что науку защищает от окостенения существующая в ней структура учителей и учеников. Учитель прививает ученику высокие стандарты суждений. В то же время ученик обучается доверять своему собственному суждению: он узнает о возможности и необходимости несогласия. Из книг и лекций можно узнать правила; учителя обучают осознанному бунту, хотя бы на примере своей собственной оригинальной – и, следовательно, бунтовщической в этом смысле – работы.
Ученики познают три общих критерия научного суждения[126]. Первый из этих критериев – правдоподобие. Он позволяет отсеять безумцев и жуликов. Он также может приводить (и иногда приводил) к отбрасыванию идей, слишком оригинальных, чтобы ортодоксальное мышление могло осознать их, – но чтобы наука вообще могла работать, с этой опасностью приходится мириться. Второй критерий – научная ценность, составная величина, содержащая в равных долях точность, важность для всей системы науки или той ее ветви, к которой относится данная идея, и степень интереса, который порождает сущность работы. Третий критерий – оригинальность. Патентные эксперты оценивают оригинальность изобретения по тому, насколько неожиданным оно оказывается для специалиста, знакомого с соответствующей областью. Ученые оценивают новые теории и новые открытия подобным же образом. Правдоподобие и научная ценность позволяют оценить качество идеи по стандартам ортодоксальной точки зрения; оригинальность определяет степень ее отклонения от ортодоксальности.
Предложенная Полани модель открытой научной республики, в которой каждый из ученых судит о работе своих коллег по общепризнанным и поддерживаемым всеми критериям, объясняет, почему идея атома обладала столь неустойчивым статусом в физике XIX века. Она была правдоподобна; она обладала значительной научной ценностью, особенно с системной точки зрения; однако никаких неожиданных открытий, касающихся атома, еще никому не удалось совершить. По крайней мере, таких открытий, которые были бы достаточно убедительными для сети из всего лишь приблизительно тысячи мужчин и женщин всего мира, которые в 1895 году называли себя физиками[127], – а также для более многочисленной сети химиков, связанной с первой.
Время атома было на подходе. В XIX веке самые неожиданные открытия в фундаментальной науке делались в химии. В первой половине века XX источником великих неожиданностей в фундаментальной науке стала физика.
В 1895 году, когда юный Эрнест Резерфорд приехал с другого конца света в Кавендишскую лабораторию, чтобы изучать физику в надежде составить себе имя в этой области, Новая Зеландия, которую он покинул, была еще территорией малоосвоенной. Инакомыслящие британские ремесленники и крестьяне, а также некоторые искатели приключений из дворян заселили этот суровый вулканический архипелаг в 1840-х годах, потеснив приплывших из Полинезии маори, которые открыли его за пять столетий до этого. Серьезное сопротивление маори, вылившееся в несколько десятилетий кровавых стычек, закончилось лишь в 1871 году, в котором и родился Резерфорд. Он учился в недавно созданных школах, гонял коров на дойку, ездил верхом в буш охотиться на диких голубей, сидящих на покрытых ягодами ветвях деревьев миро[128], помогал на льнопрядильной фабрике своего отца в Брайтуотере, на которой дикий лен, собранный в местных болотах, замачивали, мяли и трепали, получая из него льняные нити и очески. Два младших брата Резерфорда утонули; вся семья в течение нескольких месяцев искала их на берегах Тихого океана вокруг фермы.
Его детство было трудным и здоровым. Резерфорд увенчал его стипендиями на обучение – сначала в скромном колледже имени Нельсона в близлежащем городе Нельсоне на Южном острове, затем в Университете Новой Зеландии, в котором он в возрасте двадцати двух лет получил магистерскую степень сразу по двум специализациям, математике и физике. Он был человеком крепким, энергичным и сообразительным, и все эти качества потребовались ему на пути из новозеландской сельской глуши к руководству британской наукой. Еще одно, более тонкое качество – проницательность деревенского парня в сочетании с характерной для далеких от цивилизации мест глубокой неиспорченностью – сыграло важнейшую роль в тех беспрецедентных научных открытиях, которые он совершил в течение своей жизни. Как сказал его воспитанник Джеймс Чедвик, главной отличительной чертой Резерфорда был «его талант удивляться»[129]. Он сохранил это качество, несмотря на все свои успехи и несмотря на тщательно замаскированную, но иногда чрезвычайно болезненную неуверенность в себе[130], грубый шрам, оставленный его колониальным происхождением.
Первую возможность для проявления своих талантов Резерфорд нашел в Университете Новой Зеландии, в котором он получил в 1893 году степень бакалавра. «Электрические волны», открытые в 1887 году Генрихом Герцем, – сейчас мы называем их радиоволнами – произвели на Резерфорда, как и на других молодых людей по всему миру, сильнейшее впечатление. Для изучения этих волн он собрал в промозглом подвальном чулане так называемый вибратор Герца – электрически заряженные металлические шары, установленные с зазором, благодаря которому между металлическими пластинами проскакивают искры. Он искал задачу, которая могла бы стать темой его первого независимого исследования.
Такую задачу он нашел в общепринятом среди ученых – в число которых входил и сам Герц – мнении, что переменный ток высокой частоты, то есть такой, какой возникает в вибраторе Герца, когда между металлическими пластинами в обоих направлениях быстро пролетает искровое излучение, не вызывает намагничивания железа. Резерфорд предположил, что это не так, и нашел изобретательное доказательство своей правоты. За эту работу он получил стипендию Всемирной выставки 1851 года[131] на работу в Кембридже. Когда пришла телеграмма, Резерфорд копал картошку в домашнем огороде. Его мать прокричала новость с другого конца борозды; он рассмеялся, отбросил лопату и воскликнул, отмечая момент, торжественный и для сына, и для матери: «Я выкопал свою последнюю картофелину!»[132] Тридцать шесть лет спустя, когда ему был пожалован титул барона Резерфорда Нельсонского, его мать, в свою очередь, получила следующую телеграмму: «Теперь [я] лорд Резерфорд, и твоей заслуги в этом больше, чем моей»[133].
Работа под названием «Намагничивание железа высокочастотными разрядами»[134] сочетала в себе мастерские наблюдения и отважное инакомыслие. Проявив глубокую оригинальность, Резерфорд заметил слабую обратную реакцию, возникающую при намагничивании железных иголок током высокой частоты: при пропускании высокочастотного тока происходит частичное размагничивание иголок, уже намагниченных до насыщения. Здесь и сработал его талант удивляться. Он быстро понял, что радиоволны, принимаемые соответствующей антенной и подаваемые в проволочную обмотку, можно использовать для создания в пучке намагниченных иголок высокочастотного тока. Это вызовет частичное размагничивание иголок, и, если поместить рядом с ними компас, это изменение можно будет заметить по отклонению его стрелки.
К сентябрю 1895 года, когда Резерфорд добрался на одолженные деньги до Кембриджа, где он должен был начать работать под руководством прославленного директора Кавендишской лаборатории Дж. Дж. Томсона, он разработал на основе своих наблюдений устройство для улавливания радиоволн на расстоянии – по сути дела, первый, еще весьма несовершенный, радиоприемник. В это время Гульельмо Маркони еще доводил свою модель радиоприемника до совершенства в итальянском имении отца; в течение нескольких месяцев молодой новозеландец удерживал мировой рекорд по дальности приема радиопередач[135].
Опыты Резерфорда привели в восторг заслуженных британских ученых, узнавших о них от Томсона. Они быстро приняли Резерфорда в свою среду: однажды вечером его даже усадили на почетное место рядом с ректором за профессорским столом Кингс-колледжа. По его словам, он чувствовал себя там «как осел в львиной шкуре»[136], а некоторые снобы из числа сотрудников Кавендишской лаборатории просто позеленели от зависти. Благодаря великодушной помощи Томсона 18 июня 1896 года Резерфорд, нервничая, но внутренне ликуя, представил свою третью научную статью под названием «Магнитный детектор электрических волн и некоторые его применения»[137] на заседании лондонского Королевского общества, ведущей научной организации мира. Маркони догнал его лишь в сентябре[138].
Резерфорд был беден. Он был обручен с Мэри Ньютон, дочерью хозяйки квартиры, которую он снимал, когда учился в Университете Новой Зеландии, но свадьбу отложили до улучшения его материального положения. В то время, когда он трудился, чтобы добиться такого улучшения, он писал своей невесте: «Я занимаюсь темой [приема радиоволн] так интенсивно из-за ее практической важности… Если опыты, которые я буду проводить на следующей неделе, пройдут так, как я ожидаю, я вижу в будущем возможность быстрого заработка»[139].
Тут есть одна загадка, и загадка эта тянется вплоть до самой речи о «лунных миражах». Впоследствии Резерфорд был известен своим строгим отношением к бюджету исследовательской работы, нежеланием принимать финансирование от промышленных компаний или частных спонсоров, нежеланием даже запрашивать финансирование и убежденностью в том, что все можно сделать «при помощи сургуча и бечевки». Он терпеть не мог коммерциализации научных исследований и, например, когда его русскому ученику Петру Капице предложили работу консультанта в промышленной компании, сказал ему: «Нельзя одновременно служить Богу и Мамоне»[140]. Загадка эта касается того, что Ч. П. Сноу, знавший Резерфорда, назвал «единственным любопытным исключением» из «непогрешимости» его интуиции, добавив при этом, что «еще не было ученого, который допустил бы так мало ошибок»[141][142]. Это исключение – нежелание Резерфорда допустить возможность извлечения из атома полезной энергии, то самое нежелание, которое так раздражало в 1933 году Лео Сциларда. «Мне кажется, он боялся, что его любимую область ядерных исследований вот-вот захватят неверные, которые хотят разгромить ее ради коммерческой эксплуатации»[143], – рассуждает другой воспитанник Резерфорда, Марк Олифант. Однако в январе 1896 года сам Резерфорд активно стремился к коммерческой эксплуатации радио. Чем же была вызвана столь резкая перемена, определившая всю его дальнейшую жизнь?
Сохранившиеся сведения неоднозначны, но дают некоторое представление о произошедшем. В соответствии с исторической традицией английская наука была занятием благородным. Патенты на открытия, а также любые другие юридические и коммерческие ограничения, которые могли помешать свободному распространению научных результатов, как правило, считались в ней делом недостойным. На практике такая защита свободы науки могла выродиться в высокомерное презрение к «вульгарной меркантильности». Физик Эрнест Марсден, учившийся у Резерфорда и ставший его вдохновенным биографом, слышал, что «в начальный период его работы в Кембридже по меньшей мере некоторые говорили, что Резерфорд – человек неотесанный»[144]. Одной из составляющих таких сплетен могло быть презрение к его стремлению извлечь выгоду из работ, связанных с радио.
По-видимому, в дело вмешался Дж. Дж. Томсон. Внезапно открылось огромное новое поле деятельности. 8 ноября 1895 года, через месяц после прибытия Резерфорда в Кембридж, немецкий физик Вильгельм Рентген открыл «икс-лучи», исходящие из стенок катодной трубки, сделанных из флуоресцирующего стекла. В декабре Рентген сообщил о своем открытии и поверг в изумление весь мир. Это странное излучение стало новой точкой роста науки, и Томсон почти немедленно принялся за его изучение. Одновременно с этим он продолжал и свои опыты с катодными лучами, в завершение которых он обнаружил в 1897 году частицу, которую назвал «отрицательной корпускулой», – то есть электрон, первую из открытых составляющих атома. В этой работе ему неизбежно нужны были помощники. Кроме того, он не мог не понимать, какие необычайные возможности для проведения оригинальных исследований откроет это излучение перед молодым человеком, обладающим такими талантами экспериментатора, как Резерфорд.
Чтобы разрешить этот вопрос, Томсон написал патриарху британской науки лорду Кельвину, которому было тогда семьдесят два года, и спросил его мнение о коммерческих перспективах радио – как говорит Марсден, «прежде, чем попытаться соблазнить Резерфорда новой темой». В конце концов, как бы там ни обстояло дело с вульгарной меркантильностью, именно Кельвин спроектировал трансокеанский телеграфный кабель. «Великий человек ответил, что развитие [радио] может оправдать капитальные вложения в компанию стоимостью порядка 100 000 фунтов, но не более того»[145].
К 24 апреля Резерфорд прозрел. Он писал Мэри Ньютон: «Я надеюсь свести концы с концами, но в первый год мне, видимо, потребуется дополнительная помощь… Моя научная работа пока что продвигается медленно. В этом семестре я занимаюсь вместе с Профессором рентгеновскими лучами. Моя старая тема мне несколько надоела, и я рад сменить ее на что-то другое. Мне кажется, что мне будет полезно некоторое время поработать с Профессором. Я уже провел одно исследование и продемонстрировал, что могу работать самостоятельно»[146]. Письмо написано в смиренном и вовсе не уверенном тоне, как если бы через Резерфорда к его невесте по-отечески обращался призрак Дж. Дж. Томсона. Резерфорд еще не выступал перед Королевским обществом – по этому выступлению совершенно не казалось, что его тема ему «несколько надоела». Но его обращение уже свершилось. Отныне все устремления Резерфорда касались не коммерческого успеха, а научной славы.
Кажется вполне вероятным, что Дж. Дж. Томсон усадил молодого и пылкого Эрнеста Резерфорда в обитом темными панелями кабинете в неоготической Кавендишской лаборатории, которую основал Джеймс Клерк Максвелл, в том же университете, в котором Ньютон писал свои великие «Начала», и деликатно сказал ему, что нельзя одновременно служить Богу и Мамоне. Вполне вероятно, что известие о том, что заслуженный директор Кавендишской лаборатории написал небожителю лорду Кельвину о коммерческих устремлениях энергичного новозеландца, смертельно огорчило Резерфорда, и он вышел после этого разговора, чувствуя себя каким-то нелепым выскочкой. Он никогда больше не повторял этой ошибки, даже если его лаборатории оставались из-за этого без финансирования, даже если это заставляло уходить лучших из его учеников – а так оно в конце концов и случалось. Даже если это означало, что получение энергии из его любимого атома было всего лишь миражом. Но, отказавшись от коммерческой выгоды ради святой науки, Резерфорд получил взамен сам атом. Он открыл составляющие его части и дал им названия. При помощи сургуча и бечевки он сделал атом реальным.
Сургуч был кроваво-красным, и именно из него состоял самый заметный вклад Банка Англии в развитие науки[147]. Британские экспериментаторы использовали банковский сургуч для герметизации стеклянных трубок. Первая работа Резерфорда по исследованию атома, как и работа Дж. Дж. Томсона с катодными лучами, возникла на основе проводившихся в XIX веке исследований поразительных эффектов, которые возникают, если из стеклянной трубки, к концам которой припаяны металлические пластины, откачать воздух, а затем подсоединить эти пластины к батарее или катушке индуктивности. Под действием электрического заряда пустота[148] внутри герметичной трубки начинает светиться. Это свечение исходит от отрицательно заряженной пластины – катода – и поглощается пластиной, заряженной положительно, – анодом. Если изготовить анод в форме цилиндра и поместить этот цилиндр в середину трубки, можно заставить пучок такого свечения – или катодных лучей – проходить сквозь цилиндр до конца трубки, противоположного катоду. Если энергия этого пучка достаточно высока, чтобы он смог достичь стеклянной стенки, он заставляет стекло флуоресцировать. Такая катодная трубка, должным образом видоизмененная – с уплощенным стеклянным концом, покрытым фосфором для усиления флуоресценции, – становится телевизионным кинескопом.
Весной 1897 года Томсон продемонстрировал, что пучок светящегося вещества в катодной трубке не состоит из световых волн, как (сухо писал он)«почти единодушно считают немецкие физики». На самом деле катодные лучи оказались отрицательно заряженными частицами, вылетающими с отрицательного катода и притягиваемыми положительным анодом. Эти частицы можно отклонить электрическим полем и направить по криволинейной траектории полем магнитным. Частицы эти гораздо легче атома водорода и одинаковы, «каким бы ни был газ, через который проходит разряд»[149], если такой газ ввести в трубку. Поскольку они легче, чем самый легкий из известных элементов материи и одинаковы независимо от того, из какого вещества они получаются, следовало заключить, что эти частицы представляют собой некую основополагающую составную часть материи, а раз они представляют собой часть, то должно существовать и некое целое. Из существования реального, физического электрона вытекало существование реального, физического атома: таким образом, корпускулярная теория вещества впервые была убедительно подтверждена физическим опытом. На ежегодном банкете Кавендишской лаборатории в честь этого достижения Дж. Дж. Томсона была исполнена песня:
Рой корпускул благородный
Улетел в полет свободный,
О проекте
О подписке