Читать книгу «Создание атомной бомбы» онлайн полностью📖 — Ричарда Роудса — MyBook.
image

2
Атомы и пустота

Для атомной энергии нужен атом. До начала XX века никаких реальных атомов в физике не было. Идея же атома – как невидимого слоя вечной, основополагающей материи, скрытой под кажущимся миром, в котором все объединяется, кишит, растворяется и разлагается, – существует с глубокой древности. Эту концепцию выдвинул Левкипп, греческий философ V века до н. э., имя которого сохранилось благодаря упоминанию у Аристотеля; развил ее Демокрит, состоятельный и более известный фракиец того же времени. «Ибо лишь в общем мнении существует цвет, – цитирует одну из семидесяти двух утраченных книг Демокрита греческий врач Гален, – в мнении – сладкое, в мнении – горькое, в действительности же – атомы и пустота»[95][96]. Начиная с XVII века физики постулировали атомную модель мира всюду, где казалось, что это требуется для развития физической теории. Однако вопрос о том, существуют ли атомы на самом деле, оставался спорным.

Постепенно споры на эту тему свелись к обсуждению того, какие именно атомы необходимы и возможны. Исаак Ньютон представлял себе нечто вроде миниатюрных бильярдных шаров, которые соответствовали бы его механической вселенной движущихся масс. «Мне кажется вероятным, – писал он в 1704 году, – что Бог вначале дал материи форму твердых, массивных, непроницаемых, подвижных частиц таких размеров и фигур и с такими свойствами и пропорциями в отношении к пространству, которые более всего подходили бы к той цели, для которой он создал их»[97][98]. Шотландский ученый Джеймс Клерк Максвелл, которому мы обязаны созданием Кавендишской лаборатории, опубликовал в 1873 году основополагающий «Трактат об электричестве и магнетизме» (Treatise on Electricity and Magnetism), который изменил чисто механическую вселенную Ньютона с частицами, соударяющимися в пустоте, введя в нее концепцию электромагнитного поля. Это поле пронизывает пустоту; электрическая и магнитная энергия распространяется в ней со скоростью света; самый свет, как показал Максвелл, есть одна из форм электромагнитного излучения. Однако, несмотря на внесенные им же изменения, Максвелл – не в меньшей степени, чем Ньютон, – оставался приверженцем жестких, механических атомов:

Но если случались и вновь могут случиться катастрофы, если старые системы могут разрушаться и на их развалинах могут возникать новые системы, то [атомы], из которых эти системы построены, неразрушимы и неизменны – это краеугольные камни материальной Вселенной. Сейчас [они] так же неизменны по своему числу, по своим размерам и по весу, как и в то время, когда они были сотворены[99][100].

Макс Планк придерживался другого мнения. Он, как и многие его коллеги, сомневался, что атомы вообще существуют, – корпускулярная теория материи была изобретением скорее английским, чем континентальным, и ее несколько британский аромат был отвратителен носам немецких ксенофобов, – но, если атомы все же существуют, считал он, они не могут быть механическими. «Существенно важно… то, – признавал он в своей “Научной автобиографии” (Wissenschaftliche Selbstbiographie), – что внешний мир представляет собой нечто независимое от нас, абсолютное, чему противостоим мы, а поиски законов, относящихся к этому абсолютному, представляются мне самой прекрасной задачей в жизни ученого»[101][102]. Планк считал, что термодинамические законы наиболее фундаментальным из всех законов физики образом относятся к такому независимому «внешнему миру», которого требовало его стремление к абсолютному. Еще на ранних стадиях своей работы он увидел, что чисто механические атомы нарушали бы второе начало термодинамики. Его выбор был ясен.

Второе начало термодинамики гласит, что самопроизвольная передача тепла от более холодного тела более горячему невозможна без каких-либо изменений системы. Или, в обобщенной формулировке, которую сам Планк сформулировал в своей диссертации, которую он писал в Мюнхенском университете в 1879 году, «процесс передачи тепла не может быть полностью обращен какими бы то ни было средствами»[103]. Второе начало не только говорит о невозможности создания вечного двигателя, но и определяет понятие, которое предшественник Планка, профессор Рудольф Клаузиус, назвал энтропией: поскольку при выполнении любой работы происходит рассеяние энергии, выделяющейся в виде тепла, – и это тепло невозможно собрать в организованном, пригодном для использования виде, – Вселенная должна постепенно изменяться в направлении все более случайного состояния. Из этой концепции все более увеличивающегося беспорядка следует, что Вселенная развивается однонаправленным и необратимым образом; второе начало термодинамики есть физическое выражение того, что мы называем временем. Однако уравнения механики – в рамках науки, которая называется теперь классической физикой, – теоретически допускают развитие Вселенной в любом направлении, как вперед, так и назад. «Таким образом, – сетовал один видный немецкий химик, – в чисто механическом мире не может быть “до” и “после”, как в мире, где мы живем; иначе дерево могло бы превратиться в побег, а затем в семя, бабочка – в гусеницу, старик – в ребенка. Механистическая доктрина никак не объясняет тот факт, что на самом деле этого не происходит, да такое объяснение и не может быть дано ввиду некоторых фундаментальных свойств уравнений механики. Фактическая необратимость явлений природы доказывает, таким образом, наличие процессов, которые нельзя описать уравнениями механики. Тем самым выносится приговор научному материализму»[104][105]. За несколько лет до этого Планк, что было для него характерно, высказался более лаконично: «Последовательное применение второго закона [по Планку, признание роста энтропии в качестве абсолютного закона]… несовместимо с предположением о существовании атомов конечного размера»[106].

Значительная часть затруднений была связана с тем, что в то время атомы нельзя было прямо измерить в эксперименте. Они были концепцией, полезной в химии, в которой их использовали для объяснения того, почему некоторые вещества – элементы – соединяются друг с другом с образованием других веществ, но сами не могут быть разложены химическими методами. Атомы, по-видимому, объясняли, почему газы ведут себя именно так, а не иначе, – заполняют любой сосуд, в который их помещают, и оказывают равное давление на все стенки такого сосуда. Их использовали и для объяснения того поразительного открытия, что любой элемент, нагреваемый в пламени лабораторной горелки или испаряемый электрической дугой, окрашивает испускаемый свет, причем при разложении этого света призмой или дифракционной решеткой спектр неизменно разбивается на последовательность характерных ярких полос или линий. Однако еще в 1894 году, когда Роберт Сесил, третий маркиз Солсбери, канцлер Оксфордского университета и бывший[107] премьер-министр Англии, перечислял нерешенные задачи науки в своей председательской речи на заседании Британской ассоциации, вопрос о том, являются ли атомы реальными объектами или лишь удобной условностью и какова может быть их скрытая структура, по-прежнему оставался открытым:

Что есть атом каждого элемента, представляет ли он собою движение, предмет, вихрь или точку, обладающую инерцией, существуют ли пределы его делимости и, если они существуют, как налагаются такие пределы, окончателен ли длинный перечень элементов и имеют ли какие-либо из них сколько-нибудь общее происхождение, – все эти вопросы остаются так же окруженными мраком, как и прежде[108].

Именно так – выбирая между возможными вариантами – и работает физика; именно так работают все точные науки. Химик Майкл Полани, друг Лео Сциларда, исследовал методы работы науки в последние годы своего пребывания в Манчестерском университете и в Оксфорде. Он установил, что традиционная организация науки сильно отличается от представлений большинства не связанных с наукой людей. Он назвал ее «республикой науки»[109], сообществом свободно сотрудничающих мужчин и женщин, «чрезвычайно упрощенным примером свободного общества»[110]. Не все специалисты по философии науки – области, которой стал заниматься Полани, – были с ним согласны. Даже сам Полани иногда называл науку «ортодоксией». Но его республиканская модель науки сильна тем же, чем бывают сильны успешные научные модели: она объясняет взаимосвязи, которые не были понятны до нее.

Полани задавал прямые вопросы. Как избирают ученых? Какую присягу они принимают? Кто направляет их исследования – выбирает задачи, которые следует изучать, утверждает планы экспериментов, оценивает значение результатов? Кто решает, что́ соответствует научной «истине» при окончательном анализе этих результатов? Вооружившись этими вопросами, Полани отступил на шаг и рассмотрел науку извне.

За великой конструкцией, которая всего за три столетия начала преобразовывать весь мир человечества, лежала основополагающая приверженность натуралистическому взгляду на жизнь. В другие эпохи и в других местах господствовали иные воззрения – магические или мифологические. Дети обучались натуралистическому мировоззрению, когда учились говорить, когда учились читать, когда шли в школу. «Миллионы ежегодно расходуются на культивирование и распространение науки теми же самыми органами государственной власти, – написал однажды Полани, раздраженный теми, кто упорно не хотел понимать его идей, – которые не дадут ни гроша на развитие астрологии или колдовства. Другими словами, наша цивилизация глубоко привержена определенным представлениям о природе вещей; представлениям, отличным, например, от тех, которым были привержены древнеегипетская или ацтекская цивилизации»[111].

Большинство молодежи познает лишь ортодоксальные положения науки. Они выучивают «общепринятые доктрины, мертвые письмена»[112]. Некоторые, продолжающие образование в университетах, заходят дальше и познают начала научного метода. Они используют в повседневных исследованиях экспериментальные доказательства. Они открывают для себя «неопределенность и вечную временность»[113] положений науки. Они начинают вдыхать в нее жизнь.

Но это еще не значит стать ученым. Чтобы стать ученым, считал Полани, необходимо «полное посвящение»[114]. Такое посвящение дается «тесными личными связями с взглядами и практиками заслуженного наставника»[115]. Практика науки сама по себе не есть наука; это искусство, передаваемое от учителя к ученику, как передается искусство живописи или приемы и традиции юриспруденции или медицины. Познать право из одних лишь книг и лекций невозможно. Также нельзя познать и науку, потому что в науке никогда не бывает точных соответствий; никакой эксперимент не может быть окончательным доказательством; все всегда бывает упрощенным и приблизительным.

Американский физик-теоретик Ричард Фейнман как-то говорил о науке с подобным же пылом перед переполненной аудиторией студентов Калифорнийского технологического института. «Что значит “понять” что-либо?» – спросил Фейнман. Его ответ на этот вопрос полон ироническим сознанием ограниченности возможностей человека:

Представьте себе, что сложный строй движущихся объектов, который и есть «мир», – это что-то вроде гигантских шахмат, в которые играют боги, а мы следим за их игрой. В чем правила игры, мы не знаем; все, что нам разрешили, – это наблюдать за игрой. Конечно, если посмотреть подольше, то кое-какие правила можно ухватить. Под основными физическими воззрениями, под фундаментальной физикой мы понимаем правила игры. Но, даже зная все правила… лишь очень и очень редко нам удается действительно объяснить что-либо на их основе. Ведь почти все встречающиеся положения настолько сложны, что нет никакой возможности, заглядывая в правила, проследить за планом игры, а тем более предугадать очередной ход. Приходится поэтому ограничиваться самыми основными правилами. Когда мы разбираемся в них, то уже считаем, что «поняли» мир[116][117].

Научиться чувствовать доказательства; научиться рассуждать; научиться выбирать правильные интуитивные ощущения; научиться видеть, какие из сложнейших вычислений стоит повторить и каким из экспериментальных результатов не стоит доверять – эти умения дают билет на трибуны шахматной партии богов, и их обретение требует прежде всего обучения у настоящего мастера.

Полани обнаружил еще один необходимый элемент полноценного посвящения в науку – веру. Хотя точные науки стали ортодоксальной идеологией западной цивилизации, каждый волен соглашаться или не соглашаться с ними, частично или целиком: число верующих в астрологию, марксизм или непорочное зачатие по-прежнему остается огромным. Однако «никто не может быть ученым, не предполагая, что научная доктрина и научный метод фундаментально верны и что их основополагающие предпосылки могут быть приняты безоговорочно»[118].

Стать ученым можно, лишь искренне и глубоко приняв научную систему и научное мировоззрение. «Любое описание науки, прямо не называющее ее предметом веры, по сути дела, неполно и обманчиво. Оно эквивалентно утверждению о том, что наука, по сути дела, отличается от всех человеческих верований, не сводящихся к научным утверждениям, и в чем-то превосходит их, – что неверно»[119]. Вера есть та присяга, которую приносят ученые.

Так происходит отбор ученых и их принятие в этот орден. Они составляют республику образованных верующих, обучающихся в системе связей между наставниками и учениками осторожно оценивать скользкие места своей работы.

Кто же направляет эту работу? Этот вопрос на самом деле разбивается на два: кто решает, какие задачи следует изучать, какие эксперименты следует ставить? И кто оценивает значение и достоверность результатов?

Полани предложил одну аналогию[120]. Представим себе, сказал он, группу работников, которым поручили собрать очень большую, очень сложную мозаичную картинку – пазл. Как они могут организовать свою работу, чтобы выполнить ее максимально эффективно?

Каждый из работников может взять какие-то элементы пазла и попытаться совместить их. Этот метод был бы эффективным, если бы собирание пазла было сродни шелушению гороха. Но это не так. Элементы пазла не изолированы. Они были частью единого целого. И вероятность того, что один из работников случайно наберет себе элементы, подходящие друг к другу, мала. Даже если такая группа изготовит достаточно экземпляров всех элементов, чтобы в распоряжении каждого работника был весь пазл, ни один из них в одиночку не сделает столько, сколько могла бы сделать группа, если бы нашла метод совместной работы.

Наиболее эффективное решение, по словам Полани, заключается в том, чтобы позволить каждому из работников следить за тем, что делают все остальные. «Пусть они работают над пазлом вместе, видя друг друга, чтобы каждый раз, когда один из [работников] ставит какую-либо часть мозаики на место, все остальные сразу начинали искать следующий шаг, который становится возможным благодаря этому»[121]. В таком случае, даже если каждый из работников действует по собственной инициативе, его действия способствуют прогрессу всей группы. Члены группы работают вместе независимым образом; пазл собирается самым действенным способом.

Полани считал, что наука познает неизвестное, проходя через последовательность этапов, которые он называл «точками роста»[122], причем каждая из таких точек представляет собой место, в котором делаются наиболее продуктивные открытия. Узнавая о новых достижениях из сети научных изданий и личных связей с коллегами, – благодаря полной открытости обмена информацией, абсолютной и жизненно важной свободе слова – ученые немедленно начинают работать именно в тех точках, в которых личные таланты каждого из них обеспечивают максимальный положительный эффект, эмоциональный и интеллектуальный, от вложения сил и размышлений.

Тогда становится ясно, кто именно в научной среде оценивает значение результатов исследований: это делают все члены группы, как на собрании общины квакеров. «Авторитетность научного мнения остается преимущественно взаимной; она формируется среди ученых, а не над ними»[123]. Бывают ведущие ученые, ученые, которые работают в точках роста своих дисциплин необыкновенно плодотворно; но в науке нет верховных правителей. Ею управляет коллективное согласие.

Не всякий ученый способен оценить любой вклад. Сетевая структура устраняет и это затруднение. Предположим, ученый М объявляет о новом результате. Он знает свой чрезвычайно специализированный предмет лучше всех на свете; кто же в таком случае может обладать компетенцией, необходимой, чтобы оценить его работу? Но рядом с ученым М работают ученые L и N. Поскольку предметы их исследований частично пересекаются с областью работы М, они достаточно хорошо понимают его работу, чтобы судить о ее качестве и достоверности, а также понять, как она соотносится с общей научной картиной. Кроме L и N есть еще и другие ученые, K и O, а также J и P, которые достаточно хорошо знают L и N, чтобы решить, можно ли доверять их суждению о работе М. И эта цепочка продолжается дальше и дальше, вплоть до ученых A и Z, которые работают в области, почти совершенно отличной от сферы интересов М.

«Эта сеть и есть вместилище научного мнения, – подчеркивал Полани, – мнения, не присущего разуму какого-то отдельного человека, но разделенного на тысячи разных фрагментов, мнения, которого придерживаются множественные индивидуумы, каждый из которых поддерживает мнение другого опосредованно, полагаясь на согласованные цепочки, которые связывают его со всеми остальными через последовательность пересекающихся сообществ»[124]

 





1
...
...
15