Однажды путешественник Н. Н. Миклухо-Маклай высадился на одном из островов Тихого океана. Здесь его окружила угрожающая толпа дикарей. Неизвестно, чем бы закончилась эта недружелюбная встреча, если бы Миклухо-Маклай не нашел выход. Он лег на землю, положил под голову ладонь и… уснул. Спокойствие гостя остановило дикарей. Они сочли его божеством, спустившимся на землю.
Когда путешественник проснулся, островитяне оказали ему почести, какие подобают божественным проявлениям, на руках понесли в хижину.
Способность мгновенно засыпать спасла Миклухо-Маклаю жизнь. Но этот случай не исключение. Точно таким же образом своевременное погружение в сон спасает здоровье и жизнь каждого человека.
Биологические существа, даже самые простейшие, нуждаются во сне. Удивительно, но регулятором времени «сна» у всех живых организмов природа назначила одно и то же химическое соединение – мелатонин. Глубина и качество сна у человека определяется выработкой именно этого гормона.
Не будет преувеличением сказать, что гормон мелатонин – это универсальный регулятор биологических ритмов для всех живых организмов, включая одноклеточных и растений. Как правило, люди, да и ученые, воспитанные в европейской цивилизации, в техногенной культуре, не придают особого значения ритмическим процессам. Такую позицию легко оспорить, если взглянуть на жизнедеятельность организма с позиций современного системного подхода.
Жизнь и здоровье невозможны без четкой координации биологических ритмов, начиная от субклеточного до организменного уровней. Чем сложнее организм, тем важнее качество его ритмической организации. С помощью ритмов различные необходимые для жизни функции совмещаются в одном организме. Одновременно они выполняться не могут, потому что в этом случае мешали бы друг другу.
В свое время советский физиолог и кибернетик П. К. Анохин определил конфликт функций в организме, как одну из основных причин болезней человека. Он считал, что не органы надо лечить, а восстанавливать гармонию внутрисистемных отношений – необходимое условие самоисцеления органов. Этот подход прямо следовал из революционной и по сегодняшний день теории функциональных систем Анохина, согласно которой организм состоит не из органов, как принято обычно считать, а из нечто неосязаемого – из функциональных систем.
Для организма гармония внутрисистемных отношений заключается, прежде всего, в ритмическом чередовании активности различных жизненно необходимых функций. И здесь наиболее важное значение имеет циркадный (суточный) ритм. Именно он устанавливает очередность смены двух основных состояний организма: отдыха и активности.
Во время отдыха организм восстанавливает свои силы, наводит порядок, настраивается на гармоничное состояние. «Наилучший способ избавиться от тяжелого беспокойства или умственной путаницы – переспать их», – рекомендовал отец кибернетики Норберт Винер.
Наоборот, в период активности организму приходится расходовать свои силы, запасы системной устойчивости и уходить от состояния равновесия.
Равновесие и баланс чрезвычайно важны для нормального функционирования живых систем. В качестве примера того, как опасно терять этот баланс, приведем рассуждения уже упоминавшегося Норберта Винера.
Рассматривая природу системного равновесия на примере борьбы мангусты со змеей, Винер писал: «Мангуста не является невосприимчивой к яду кобры, хотя она до некоторой степени защищена своей жесткой шкурой, которую змее трудно прокусить. По описанию Киплинга, эта борьба – настоящая игра со смертью, состязание в мускульной ловкости и проворстве. Нет основания считать, что у мангусты движения быстрее или точнее, чем у кобры. Тем не менее мангуста почти всегда убивает кобру и выходит из борьбы без единой царапины. Как же ей это удается?
Я даю здесь объяснение, которое мне кажется верным и которое я составил, когда посмотрел такое сражение, а также кинофильм о других подобных сражениях. Я не гарантирую правильности ни своих наблюдений, ни своих интерпретаций. Мангуста начинает с ложного выпада, который вызывает бросок змеи. Мангуста увертывается и делает еще выпад, так что противники действуют в некотором ритме. Но эта пляска не статическая, а постепенно прогрессирующая. Свои выпады мангуста делает все раньше и раньше по отношению к броскам кобры и, наконец, нападает в тот момент, когда кобра вытянулась во всю длину и не может двигаться быстро. На сей раз мангуста не делает ложного выпада, а точным броском прокусывает мозг змеи и убивает ее.
Другими словами, образ действия змеи сводится к одиночным, не связанным между собой броскам, тогда как мангуста действует с учетом некоторого, хотя и не очень большого отрезка всего прошлого хода сражения. В этом отношении мангуста действует подобно обучающейся машине, и действительная смертоносность ее нападения основана на гораздо более высокой организации нервной системы» [5, с.237].
В примере Норберта Винера высота позиции кобры – это жизненный потенциал системы, который должен сохраняться. Инстинктивно после каждого броска кобра стремится вернуться в это нейтральное положение, но не успевает. А вот мангуста успевает и поэтому побеждает. Теперь давайте взглянем на соотношения периодов активности и восстановления (сна). Успевает ли за время сна и отдыха организм возвратиться в состояние равновесия?
Если не успевает, то постепенно теряется равновесие системы, уменьшается жизненная сила, растет разрегулированность всего организма.
В физиологии старения подобные концепции получили название «катастрофы ошибок». Представьте себе покатившийся по склону горы камешек, который столкнул с места другие камешки, те – третьи. И вот уже не один, а множество камней катятся вниз, представляя собой все большую опасность. Такая метафора позволяет понять суть концепции «катастрофы ошибок».
Разработанные учеными в семидесятых годах двадцатого века теории катастроф ошибок пытались объяснить, как происходит старение биологических организмов. Эти теории относились ко всей протяженности биологической жизни. Но дело в том, что с подобными катастрофами в уменьшенном виде человек сталкивается каждый день.
Существует множество факторов повседневной жизни, способствующих этому: стрессы, неудобные позы, навязанные цивилизацией социальные нормы и требования, не учитывающие индивидуальных потребностей, однонаправленная деятельность, сшибки нервных процессов и многое другое.
Как отмечает Сергей Вербин, все достаточно сложные системы испытывают одни и те же трудности – они накапливают ошибки в своей деятельности. В результате, начинают «зависать» и «тормозить». Лучший, по его мнению, способ решения проблемы для сложных технических систем – обнуление, перезагрузка, возвращение к исходному состоянию [6].
Живые системы также нуждаются в такой процедуре и чем сложнее система, тем в большей степени. Природа в ходе эволюции разработала множество механизмов такого восстановления. Сам Вербин рекомендует смех. После того как человек от души посмеется, его мозг очищается от всех локальных «зависаний» и «спазмов». При этом мозговая деятельность возрастает в несколько раз, резко улучшается память, человек принимает верные решения, легче творит.
Восстанавливать жизненность систем позволяют своевременный отдых и сон. Такую же функцию выполняют и трансовые состояния, имея в своем арсенале множество средств для восстановления жизненного баланса.
Поэтому не стоит пренебрегать советом психологов: вместо чашечки крепкого кофе, которая должна взбодрить, использовать другое средство. Рекомендуется на некоторое время или заснуть, или впасть в транс, или провести десятиминутный сеанс полного расслабления организма, или просто посмеяться. Через положенное время вы почувствуете свежесть и бодрость. Выпитый же кофе не позволит восстановиться организму, в этот момент ему нужна не активация, а восстановление системного равновесия, поэтому бодрящий эффект будет временным.
Функции, требующие активности, расходования сил и запасов, не совместимы с выполнением функций восстановления. Поэтому любой биологический организм четко отмеряет то время, когда следует спать и приводить себя в порядок, и то время, когда необходимо действовать: добывать пищу, размножаться, спасаться от опасности.
Если сон нарушен или невозможен, то период восстановления организма не наступает.
На клеточном уровне это означает, что вовремя не ремонтируются повреждения жизненно важных молекул (ДНК), не так эффективно устраняются разрушительные последствия действия свободных радикалов.
На функциональном – не восстанавливается баланс нервной системы. На психическом – нарастают сбои в работе психики.
Таким образом, очевидно, что сохранение баланса сна и активности является одним из условий здоровья и сохранения молодости.
С точки зрения современных наук, изучающих управление большими, сложными системами, сохранение организации ритмов это совсем не простая задача. Система биологических ритмов постоянно меняет свою настройку под воздействием множества изменений, происходящих как в самом организме, так и во внешней среде. Гормоном, доставляющим информацию о ритмах до органов и тканей и переключающим режимы их функционирования, служит мелатонин [7].
Все живые организмы, начиная от простейших одноклеточных, используют для регуляции суточных ритмов именно это вещество – мелатонин.
Поскольку с возрастом мелатонина вырабатывается все меньше, то и возможности четкого разделения периодов восстановления и периодов активности уменьшаются. Как итог – в организме нарастает конфликт функциональных систем.
Особое значение здесь играет конфликт функций, связанных с активным поведением и, напротив, восстановлением организма. На самом деле реальные процессы намного сложнее и запутаннее, но функциональный подход делает возможным выделять за множеством событий главные: взаимоотношения и конфликты функциональных систем.
Многочисленными экспериментами показано, что заместительная терапия препаратами мелатонина способствует восстановлению биологического ритма, приводит к нормализации ночного сна (ускоряет засыпание, снижает число ночных пробуждений, улучшает самочувствие после пробуждения) [8].
Например, Пьерпаоли свидетельствует, что люди, принимавшие мелатонин, чувствуют себя более отдохнувшими и свежими, чем это было после приёма обычных снотворных.
Дитер Кунц, заведующий лабораторией сна в Университетской психиатрической клинике Шарите при больнице св. Хедвиги в Берлине убеждает, что прием мелатонина в виде лекарства особенно важен для пожилых людей, когда его уровень в крови по ночам становится действительно слишком низким. Этот гормон, принимаемый в правильное время, может нормализовать нарушения внутреннего ритма, а таблетка синтетического мелатонина в дозировке 3 мг действует значительно лучше, чем плацебо [9].
Голландский хронобиолог Франк Шеер и его сотрудники показали, что прием гормона в дозе 2,5 мг благотворно действовал на пациентов, больных гипертонией. У этих пациентов из-за нарушений хронобиологического ритма не происходило естественного ночного понижения кровяного давления. После приёма препарата хронобиологический ритм восстанавливался [10].
Мелатонин – уникальный антиоксидант.
Известно, что продолжительность жизни у разных биологических видов прямо связана с антиоксидантной активностью. Под антиоксидантной активностью ученые понимают способность живых организмов устранять опасные для них молекулы – свободные радикалы, которые наносят повреждения ДНК, белковым комплексам. Справляются со свободными радикалами биологические организмы за счет синтеза специальных защитных молекул – антиоксидантов. Эти молекулы нейтрализуют свободные радикалы.
Существует закономерность: чем дольше живет организм, тем выше содержание у него внутренних антиоксидантов (СОД или супероксиддисмутазы, бета-каротина, альфа-токоферола и других).
Исследуя свойства мелатонина, ученые обнаружили, что по своей антирадикальной активности (то есть защищающей от свободных радикалов) мелатонин является одним из наиболее сильных и превосходит такие мощные антиоксиданты, как глутатион, витамин Е и манитол [11].
Не менее важным является и то, что мелатонин сам регулирует функцию антиоксидантной активности, усиливая её. Пептиды эпифиза активируют СОД – фермент, играющий ключевую роль в антиоксидантной защите организма. С другой стороны, мелатонин способен угнетать образование в организме агрессивных канцерогенов.
Не все антиоксиданты могут проходить через биологические мембраны. Поэтому прием дополнительных антиоксидантов с целью предотвратить старение организма часто не оказывает полезного эффекта. Особенностью мелатонина является и то, что он способен проникать во все органеллы человеческих клеток, легко проходит через плазматические мембраны, защищая ДНК и молекулы протеинов [12]. В отличие от большинства других внутриклеточных антиоксидантов, локализующихся преимущественно в определенных клеточных структурах, присутствие мелатонина и, следовательно, его антиоксидантная и регулирующая активность обнаружены во всех клеточных структурах, включая ядро.
Являясь сильным антиоксидантом, мелатонин уникален ещё и тем, что каждая его молекула способна принимать на себя несколько молекул АФК (активные формы кислорода), оставаясь при этом нетоксичной [13].
Получается, что мелатонин не только регулирует биологический ритм отдыха и восстановления организма, но и непосредственно влияет на активность антиоксидантных защитных систем.
Кветной И.М. – известный российский эндокринолог, получивший в 1981 году премию Ленинского комсомола за открытие внеэпифизарных источников синтеза мелатонина, обратил внимание на ещё одну неразгаданную роль этого загадочного гормона. Дело в том, что в середине семидесятых годов двадцатого века был обнаружен особый вид лимфоцитов (БГЛ), обладающих удивительной, только им присущей функцией – они убивали опухолевые клетки. Достаточно было к культуре опухолевых клеток прилить взвесь БГЛ, как опухолевые клетки погибали. Причем, что интересно, БГЛ не обладали видовой специфичностью и действовали на клетки любых опухолей. Ученые были ошеломлены установленным фактом и назвали эти клетки естественными киллерами (от английского слова killer – убийца)» [14]. Эксперименты показали, что содержимое клеток-киллеров – большое количество секреторных гранул, наполненных тремя гормонами: «вездесущим» мелатонином, серотонином, β-эндорфином.
При слиянии клеток-киллеров с опухолевыми клетками секреторные гранулы киллеров внедряются в опухолевые клетки, вслед за чем наступает деструкция последних.
Многообразие выявленных функций мелатонина не случайно.
По всей видимости, свойства этого гормона подтверждают его универсальное для биологических организмов значение – включать/ отключать защитные и восстановительные работы на всех уровнях организации жизни тела.
Можно предполагать, что такая универсальность была выработана в ходе эволюции от простейших до человека, как постепенное развитие одной из важнейших функциональных систем по Анохину – регулирование восстановительных, защитных процессов, обеспечивающих сохранение и развитие целостности.
Анохиным было введено понятие функциональных систем организма для того, чтобы избавить ученых-биологов, медиков от системной «близорукости» – изучения регуляции отдельных элементов, органов тела, а не целостных функций. Как уже упоминалось, согласно системному подходу Анохина, болезнь это не следствие болезни конкретных органов, а следствие конфликта различных функций. Во многом, системный подход Анохина близок к методам восточной медицины – целостно воздействовать на организм через активные точки регуляции. При снятии функционального конфликта органы и клетки организма имеют значительные ресурсы самовосстановления.
Читателю будет интересно узнать, что в китайской медицине тысячелетиями для омоложения организма используется точка «от ста болезней». Стимуляция этой точки улучшает состояние эпифиза и усиливает естественное производство мелатонина организмом. Но важно воздействовать на активную точку, следуя ритмике организма. О важности ритмов мы уже говорили ранее. Активация точки в неправильное время может привести к обратным результатам – десинхронизации биологических ритмов и нарастанию функциональных конфликтов.
О проекте
О подписке