«Только познав все причины болезни, настоящая медицина превращается в медицину будущего, то есть гигиену в широком смысле слова».
Иван Петрович Павлов (1849–1936) – великий русский учёный, который, начав изучать процессы пищеварения, внёс решающий вклад в изучение высшей нервной деятельности!
Медицина, помимо предоставления медицинского обеспечения населения, является также научной областью, где врачи и медицинские учёные проводят изучения болезней и в лечении заболеваний, изобретают новые виды медицинских услуг, лечебные процедуры и приборы, лекарства и вакцины. Далее будут перечислены известные события в развитии медицинской науки нашими врачами и учёными, открытия изучений и свершения которые толкают вперёд отечественную медицину в её развитии, знания которые уже внедряются во врачебную и лечебную практику современности.
Одним из успешных годов для учёных и врачей стал 2018 год – тогда они создали инсулинпродуцирующие клетки, которые могут бороться с сахарным диабетом: их используют для замещения повреждённых при диабете тканей поджелудочной железы. Российские специалисты также научились создавать эквиваленты органов и систем органов человека из аутологичных (взятых у самого пациента) клеток: так, уже создана аутологичная уретра и элементы хрящевой ткани. В 2019 году учёные Первого Московского государственного медицинского университета им. И. М. Сеченова создали новую клеточную технологию для лечения фиброза связок – это позволит вылечить фиброз и сделать огрубевшие ткани связок здоровыми и эластичными. Отличились в истории современной медицины нижегородские врачи – они изобрели «дермальный эквивалент», или проще говоря, Искусственную кожу для лечения ожогов: он создан на основе компонентов плазмы крови, коллагена и стволовых клеток. В данном случае это является отличным прогрессом в лечении и главным дополнением к уже существующей практике лечения ожогов, язв и методики пересадки кожи. А уже в 2018 году российские учёные Курчатовского института создали аналог человеческой кожи – разработка нужна для испытаний биологической активности лекарственных препаратов и моделирования дерматологических заболеваний, ну и также появились первые научные результаты в прогрессе создания кожи человека. А учёные Донского государственного технического университета (ДГТУ) в 2019 году разработали биопринтер, с помощью которого можно будет создать ткани для регенеративной медицины: в том же году в Бурятии, в Улан-Удэ, началось большое производство аналога живой кожи.
Учёные из Института биофизики клетки изобрели метод криоконсервации и первым научным достижением было восстановление работы размороженного сердца лягушки, что является прорывом в медицине: сначала этот орган заморозили при температуре -196 °С, а затем хранили 45 суток. До этого получалось сохранять жизнеспособность сердца только в течение 6 часов. Предполагается, что новая технология позволит дольше хранить органы для трансплантаций.
Новосибирские врачи также внесли большой вклад в развитие медицины, в частности деятели медицины из Института химической биологии и фундаментальной медицины занялись изобретением лекарства от рака на основе вируса осповакцины и грудного молока: они создали виротерапию, или применение вирусов для лечения тяжёлых заболеваний – метод, который разрабатывается ещё с 1960-х годов и наконец удалось создать генно-инженерный препарат лактаптин, который способен угнетать рост опухоли. По созданию и изучению создания биоискуственных человеческих органов также были удачные начинания: в 2014 году учёные создали биоискуственную печень и провели над ней успешные доклинические испытания.
В плане медицинских технологий также есть прогресс. Отечественные врачи-онкологи под руководством Святослава Зиновьева изобрели биочипы для быстрой диагностики рака, разработанные сразу в нескольких научных учреждениях в России. Эта новая технология позволяет существенно сократить время проведения анализа, а для постановки диагноза при помощи биочипа требуется всего несколько часов. За это изобретение врачи были удостоены награды – премии «Призвание» в 2017 году.
В наши дни впервые в истории России даже появился собственный отечественный робот–хирург, самый первый который является достижением учёных Института конструкторско-технологической информатики, как аналог американского робота «Да Винчи». А 7 марта 2018 года в Пензе первый экземпляр робота-хирурга успешно прооперировал свинку Розу. Сегодня всё больше хирургических операций проводится при помощи роботов и ведётся их внедрение в крупные медицинские учреждения. Так, только в московских больницах, на 2018 год действовало 16 роботов, управляемые самими хирургами в проведении тяжёлых операций. Как раз в одной из крупнейших в России государственных урологических клиник МГМСУ в Московской городской клинической больнице им. С. И. Спасокукоцкого № 50 накоплен значительный опыт использования роботических систем: c 2008 года в этой клинике выполнено более тысячи робот-ассистированных операций35. По сути эта Московская поликлиника стала центром внедрения в отечественную медицину доселе невиданную ранее процедуру лечения – роботохирургию. Применение роботов позволяет выполнять ювелирные разрезы на совсем небольшой площади, увеличивать в десятки раз объект вмешательства, к тому же в отличие от живого человека робот не устаёт и не делает ошибок – однако это не значит, что можно обойтись без хирурга, ведь управлять роботом может только человек. Помимо чисто самих роботов в больницы ведётся внедрение робототизированного оборудования – это когда идёт упрощённая работа врачей во время операции, с применением аппаратов и механизмов–инструментов для удобной работы и сокращении времени на саму операцию.
Помимо проведения хирургических работ, робототизация в медицине внедряется и в другие сферы лечения. Так, в московском технопарке «Строгино» был сконструирован Аппарат для быстрого заживления ран: на повреждённый участок тела накладывается повязка, которая присоединяется к аппарату с помощью специальных трубок – по одной из них в рану поступает лекарство, а по другой – удаляется гной, в итоге скорость заживления ран повышается в 3–4 раза. А учёные из Сеченовского университета и МГТУ имени Баумана создали новое устройство для быстрого заживления ран и язв при помощи холодной плазмы и успешно проверили его работу на крысах – это прибор «Плазон». Из российских разработок нельзя не отметить активное внедрение медицинских роботизированных тренажёров Эйдос (Татарстан) в практику обучения медицинского персонала. А ещё в фазе клинических испытаний находится экзоскелет «Атлет» российской компании ООО «ЭкзоАтлет».
Помимо роботов-хирургов в России появились роботы-медсёстры. Так техники компании АО НПО «СПЛАВ», совместно с учёными с МГУ в начале 2010-х готов разработали первый диагностическо лечебный комплекс поддержания жизнедеятельности человека «Ангел», предназначенный для оказания медицинской помощи при первичной диагностике, автоматизированного контроля за жизнедеятельностью пострадавшего, а также для введения назначенных препаратов по заданному алгоритму. Система проводит измерение 12 параметров функционирования организма человека (начиная от температуры, давления, пульса и т.п.), ставится предварительный диагноз, который вместе с результатами измерений направляется врачу на утверждение. Это устройство было специально разработано с целью снижения перегруженности врачей в их медицинской работе, фактически заменяя медсестру для выполнения ею других медицинских задач. В 2016 году началось серийное производство таких модулей. На тот год было известно, что первые 100 комплексов, как ожидается, будут направлены в Пермский край, где их планируется поставить в отдалённые районы. Три «Ангела» уже задействованы в Тульской области, а на сентябрь 2018 года робот уже используется в МЧС и некоторых региональных учебных учреждениях36. А в 2018 году концерн «Техмаш» (входит в Ростех) представил на форуме «Биотехмед» первый образец нового модернизированного облегчённого диагностического лечебного комплекса «Ангел».
2019 год для России стал знаменательным в успешном испытании первого в мире устройства для лечения детей с пороком сердца, разработка которого шла с 2015 года! Учёные Сеченовского университета, совместно с коллегами из Московского института электронной техники и Бакулевского центра сердечно-сосудистой хирургии, с 2015 года ведут разработку альтернативного способа лечения. Разработанный ими аппарат представляет собой насос или турбину из биосовместимого сплава на основе титана, часть деталей которого печатается на биопринтере. Устройство имплантируется в грудную полость ребёнка и забирает часть крови из левого желудочка сердца и доставляет в аорту по сердечному руслу.
В 2016 году в московском Экспоцентре на выставке медицинский изобретений российские учёные-медики представили первый в мире универсальный подвижной рентген, который может «фотографировать» из разных положений организм человека! На той же выставке учёные показали неинвазивный (бесконтактный) глюкометр – теперь не нужно больше колоть пальцы, чтобы узнать свой уровень сахара – нужно всего лишь положить его в особый инфракрасный приборчик и через несколько секунд на мониторе своего смартфона или ноутбука, где будет установлена нужная программа, вы увидите нужные цифры.
В 2014 году в Москве был изобретён трёхмерный биопринтер – позволяет производить или, проще говоря, печатать органы и ткани. В 2015 году при помощи этого устройства была создана щитовидная железа мыши и полученный орган был успешно пересажен животному. Новым прогрессом в печатании органов человека и животного на биопринтере стал 2018 год – российские учёные впервые в мире, на борту космической станции МКС, напечатали 12 органов! Это стало новым открытием в плане создания органов в невесомости и в открытом космосе. Печатание биопринтером органов стало постепенно внедряться в медицинские учреждения российских городов: так, в том же 2018 году в Приамурье начала работу лаборатория по выращиванию клеток кожи и печати 3D-органов, а в Уфе провели уникальную операцию с использованием 3D модели почки при удалении у пациентки раковой опухоли! Российские учёные также заявили о намерении выращивать суставы с помощью 3D-принтера и при иных методах, провели первые результаты этого: в 2017 году учёные из Тюменского государственного медицинского университета (ТГМУ) распечатали полимерный протез бедренной кости для замены изношенного имплантата; в том же году в Самаре врачи провели тестирование методов печати суставных протезов для лечения пациентов с артрозом. В 2018 году в ТГМУ был протестирован аддитивный подход для создания заменителей костей из титанового сплава. В том же году учёные Центра композиционных материалов НИТУ «МИСиС», создали искусственные кости, умеющие залечивать трещины. Похоже что российские врачи стали понимать, что 3D-печать обладает рядом преимуществ перед обычными методами протезирования, а первые успешные операции доказывают конкурентоспособность технологии.
В 2019 году учёные Сеченовского университета, совместно с коллегами из других медицинских учреждений, разработали новый способ создания хрящей для коленных суставов – на основе клеток пациента, которые благодаря уникальной технологии повторяют физиологические и анатомические свойства натурального хряща, и начали проводить его испытания на животных. В том же году учёными Сеченовского института, совместно с коллегами из Института фотонных технологий ФНИЦ «Кристаллография и фотоника», будет создан первый в России лазерный биопринтер, работающий по технологии LIFT – биопечати на основе индуцированного лазером переноса клеток. И вновь в том же году учёные из Института высокомолекулярных соединений Российской академии наук Санкт-Петербурга (ИВС РАН) создали искусственный хрящ на основе полимерных материалов, который может использоваться для помощи страдающим от заболеваний суставов. В 2019 году будет запущена в серийное производство навигационная система по 3D модели органов и тканей тела, которая позволит увеличить количество органов для их напечатания на биопринтере!
В плане создания новых лечебных препаратов также произошли новшества. В ранее упоминавшемся Экспоцентре 2016 года учёные–медики Инновационного научно-производственного центра «Пептоген» продемонстрировали изобретённые ими препараты, которые могут стать настоящим спасением после инсульта. Уникальность данного пептидного препарата в том, что он на самой ранней стадии развития инсульта включается в процесс запуска целого ряда реакций, препятствующих гибели клеток мозга – нейронов. Пептид обладает также ноотропным действием, улучшает память, в том числе и у здоровых людей. В 2018 году специалисты разработали группу лекарственных препаратов против гепатита В, которые разрушают вирус внутри клеток печени, полностью побеждая даже хроническую форму болезни. По словам специалистов, сейчас в мире нет подобных лекарств: существуют медикаменты, подавляющие вирус, но не убивающие его. Ещё одна перспективная разработка 2018 года, созданная российскими учёными, представляет собой новую технологию лечения рака, которая значительно повышает эффект химиотерапии: конкретно лечение источника раковой опухоли – злокачественной стволовой клетки, с которой связывают механизм формирования метастазов и внезапные рецидивы опухоли – достаточно уцелеть лишь одной такой клетке и она может в любой момент возобновить процесс образования опухоли.
Также в этом году российские учёные создали систему внутриклеточной доставки лекарств. Во всём мире врачи бьются над тем, чтобы создать лекарства, способные убить опухоль, не разрушая остальные ткани и органы человека. Одно из решений этой проблемы – адресная доставка действующего вещества с помощью микрокапсул. Предполагается, что капсулы будут высвобождать действующее вещество только там, где это нужно. Революционный российский препарат против рака от компании Biocad в 2016 году успешно прошёл испытания на животных и показал лучшую в мире эффективность: препарат демаскирует раковые клетки, позволяя внутренним силам организма бороться с ними, что намного безопаснее токсичной химиотерапии. Также российские учёные в 2017 году успешно протестировали в космосе генно-инженерный препарат от всех видов и стадий злокачественных опухолей, пациенты смогут получить его через три-четыре года37. В том же 2017 году российские учёные создали молекулу, которая позволяет блокировать удовольствие от приема героина, морфина и дезоморфина: после испытаний на животных и людях, к 2023 году средство может стать основой для первого российского лекарства от наркозависимости – это первое российское средство противорецидивного лечения наркозависимости! А первый российский препарат для больных рассеянным склерозом, о разработке которого стало известно в 2017 году, получил название «Ксемус».
Далее будут приводится все новости медицинской науки, которые попали в поле зрения. В том же 2017 году российская компания «Инфектекс» разработала уникальный лекарственный препарат SQ109, который необходим для лечения устойчивого туберкулёза. В 2017 год российские учёные из Новосибирского института органической химии имени Ворожцова СО РАН разработали уникальный противовирусный препарат, в основе которого используется синтезированные молекулы: в ходе тестирования нового препарата, была установлена его эффективность, сравнимая с лекарством озельтамивиром38
Бесплатно
Установите приложение, чтобы читать эту книгу бесплатно
О проекте
О подписке