Поначалу эта базовая идея субстрат-независимости привлекла меня тем, что у нее есть большое количество красивых иллюстраций в физике. Например, волны: у них есть разнообразные свойства – скорость, длина волны, частота, и физики могут решать связывающие их уравнения, совершенно не думая о том, как именно субстрат тут волнуется. Если вы слышите что-то, то вы регистрируете звуковые волны, распространяющиеся в той смеси газов, которую мы называем воздухом, и мы можем рассчитать относительно этих волн все что угодно – что их интенсивность уменьшается как квадрат расстояния, или как они проходят через открытую дверь или отражаются от стен, производя эхо, – ничего не зная о составе воздуха. На самом деле нам даже не обязательно знать, что он состоит из молекул: мы можем отвлечься ото всех подробностей относительно кислорода, азота или углекислого газа, потому что единственная характеристика этого субстрата, которая имеет значение и которая входит в знаменитое волновое уравнение, – это скорость звука, которую нам несложно померить и которая в данном случае будет равна примерно 300 метрам в секунду. Я рассказывал об этом волновом уравнении своим студентам на лекциях прошлой весной и говорил им, в частности, о том, что его открыли и им стали успешно пользоваться еще задолго до того, как физики установили, что молекулы и атомы вообще существуют!
Этот пример с волновым уравнением позволяет сделать три вывода. Во-первых, независимость от субстрата еще не означает, что без субстрата можно обойтись, но только лишь – что многие подробности его устройства не важны. Вы не услышите никакого звука в безвоздушном пространстве, но если замените воздух каким-нибудь другим газом, разницы не заметите. Точно так же вы не сможете производить вычисления без материи, но любая материя сгодится, если только ее можно будет организовать в гейты NAND, в нейронную сеть или в какие-то другие исходные блоки универсального компьютера. Во-вторых, субстрат-независимые явления живут свою жизнь, каков бы субстрат ни был. Волна пробегает по поверхности озера, хотя ни одна из молекул содержащейся в нем воды не делает этого, они только ходят вверх и вниз наподобие футбольных фанатов, устраивающих “волну” на трибуне стадиона. В-третьих, часто нас интересует именно не зависящий от субстрата аспект явления: серфера обычно заботят высота волны и ее положение, а никак не ее молекулярный состав. Мы видели, что это так для информации, и это так для вычислений: если два программиста вместе ловят глюк в написанном ими коде, они вряд ли будут обсуждать транзисторы.
Мы приблизились к возможному ответу на наш исходный вопрос о том, как грубая физическая материя может породить нечто представляющееся настолько эфемерным, абстрактным и бестелесным, как разум: он кажется нам таким бестелесным из-за своей субстрат-независимости, из-за того, что живет своей жизнью, которая не зависит от физических деталей его устройства и не отражает их. Говоря коротко, вычисление – это определенная фигура пространственно-временного упорядочения атомов, и важны здесь не сами атомы, а именно эта фигура! Материя не важна.
Другими словами, “хард” здесь материя, а фигура – это “софт”. Субстрат-независимость вычисления означает, что AI возможен: разум не требует ни плоти, ни крови, ни атомов углерода.
Благодаря этой субстрат-независимости изобретательные инженеры непрерывно сменяют одну технологию внутри компьютера другой, радикально улучшенной, но не требовавшей замены “софта”. Результат во всех отношениях нагляден в истории запоминающих устройств. Как показывает рис. 2.8, стоимость вычисления сокращается вдвое примерно каждые два года, и этот тренд сохраняется уже более века, снизив стоимость компьютера в миллион миллионов миллионов (в 1018) раз со времен младенчества моей бабушки. Если бы все сейчас стало в миллион миллионов миллионов раз дешевле, то сотой части цента хватило бы, чтобы скупить все товары и услуги, произведенные или оказанные на Земле в тот год. Такое сильное снижение цены отчасти объясняет, почему сейчас вычисления проникают у нас повсюду, переместившись из отдельно стоящих зданий, занятых вычисляющими устройствами, в наши дома, автомобили и карманы – и даже вдруг оказываясь в самых неожиданных местах, например в кроссовках.
Рис. 2.8
С 1900 года вычисления становились вдвое дешевле примерно каждые пару лет. График показывает, какую вычислительную мощность, измеряемую в количестве операций над числами с плавающей запятой в секунду (FLOPS), можно было купить на тысячу долларов{5}. Частные случаи вычислений, которые соответствуют одной операции над числами с плавающей запятой, соответствуют 105 элементарным логическим операциям вроде обращения бита (замены 0 на 1, и наоборот) или одного срабатывания гейта NAND.
Почему развитие наших технологий позволяет им удваивать производительность с такой регулярной периодичностью, обнаруживая то, что математики называют экспоненциальным ростом? Почему это сказывается не только на миниатюризации транзисторов (тренд, известный как закон Мура), но, и даже в большей степени, на развитии вычислений в целом (рис. 2.8), памяти (рис. 2.4), на море других технологий, от секвенирования генома до томографии головного мозга? Рэй Курцвейл называет это явление регулярного удвоения “законом ускоряющегося возврата”.
В известных мне примерах регулярного удвоения в природных явлениях обнаруживается та же самая фундаментальная причина, и в том, что нечто подобное происходит в технике, нет ничего исключительного: и тут следующий шаг создается предыдущим. Например, вам самим приходилось переживать экспоненциальный рост сразу после того, как вас зачали: каждая из ваших клеточек, грубо говоря, ежедневно делится на две, из-за чего их общее количество возрастает день за днем в пропорции 1, 2, 4, 8, 16 и так далее. В соответствии с наиболее распространенной теорией нашего космического происхождения, известной как теория инфляции, наша Вселенная в своем младенчестве росла по тому же экспоненциальному закону, что и вы сами, удваивая свой размер за равные промежутки времени до тех пор, пока из крупинки меньше любого атома не превратилась в пространство, включающее все когда-либо виденные нами галактики. И опять причина этого заключалась в том, что каждый шаг, удваивающий ее размер, служил основанием для совершения следующего. Теперь по тому же закону стала развиваться и технология: как только предыдущая технология становится вдвое мощнее, ее можно использовать для создания новой технологии, которая также окажется вдвое мощнее предыдущей, запуская механизм повторяющихся удвоений в духе закона Мура.
Но с той же регулярностью, как сами удвоения, высказываются опасения, что удвоения подходят к концу. Да, действие закона Мура рано или поздно прекратится: у миниатюризации транзистора есть физический предел. Но некоторые люди думают, что закон Мура синонимичен регулярному удвоению нашей технической мощи вообще. В противоположность им Рэй Курцвейл указывает, что закон Мура – это проявление не первой, а пятой технологической парадигмы, переносящей экспоненциальный рост в сферу вычислительных технологий, как показано на рис. 2.8: как только предыдущая технология перестает совершенствоваться, мы заменяем ее лучшей. Когда мы не можем больше уменьшать вакуумные колбы, мы заменяем их полупроводниковыми транзисторами, а потом и интегральными схемами, где электроны движутся в двух измерениях. Когда и эта технология достигнет своего предела, мы уже представляем, куда двинуться дальше: например, создавать трехмерные интегральные цепи или делать ставку на что-то отличное от электронов.
Никто сейчас не знает, какой новый вычислительный субстрат вырвется в лидеры, но мы знаем, что до пределов, положенных законами природы, нам еще далеко. Мой коллега по MIT Сет Ллойд выяснил, что это за фундаментальный предел, и мы обсудим его в главе 6, и этот предел на целых 33 порядка (то есть в 1033 раза) отстоит от нынешнего положения вещей в том, что касается способности материи производить вычисления. Так что если мы будем и дальше удваивать производительность наших компьютеров каждые два – три года, для достижения этой последней черты нам понадобится больше двух столетий.
Хотя каждый универсальный компьютер способен на те же вычисления, что и любой другой, некоторые из них могут отличаться от прочих своей высокой производительностью. Например, вычисление, требующее миллионов умножений, не требует миллионов различных совершающих умножение модулей с использованием различных транзисторов, как показано на рис. 2.6, – требуется только один такой модуль, который можно использовать многократно при соответствующей организации ввода данных. В соответствии с этим духом максимизации эффективности большинство современных компьютеров действуют согласно парадигме, подразумевающей разделение всякого вычисления на много шагов, в перерывах между которыми информация переводится из вычислительных модулей в модули памяти и обратно. Такая архитектура вычислительных устройств была разработана между 1935 и 1945 годами пионерами компьютерных технологий – такими, как Алан Тьюринг, Конрад Цузе, Преспер Эккерт, Джон Мокли и Джон фон Нейман. Ее важная особенность заключается в том, что в памяти компьютера хранятся не только данные, но и его “софт” (то есть программа, определяющая, что надо делать с данными). На каждом шагу центральный процессор выполняет очередную операцию, определяющую, что именно надо сделать с данными. Еще одна часть памяти занята тем, чтобы определять, каков будет следующий шаг, просто пересчитывая, сколько шагов уже сделано, она так и называется – счетчик команд: это часть памяти, где хранится номер исполняемой команды. Переход к следующей команде просто прибавляет единицу к счетчику. Для того чтобы перейти к нужной команде, надо просто задать программному счетчику нужный номер – так и поступает оператор “если”, устраивая внутри программы петлевой возврат к уже пройденному.
Современным компьютерам удается значительно ускорить выполнение вычислений, проводя их, что называется, “параллельно”, в продолжение идеи повторного использования одних и тех же модулей: если вычисление можно разделить на части и каждую часть выполнять самостоятельно (поскольку результат одной не требуется для выполнения другой), то тогда эти части можно вычислять одновременно в разных составляющих “харда”.
Идеально воплощение параллельности достигается в квантовом компьютере. Пионер теории квантовых вычислений Дэвид Дойч утверждал в полемическом запале, что “квантовый компьютер распределяет доступную ему информацию по бесчисленному множеству копий себя самого во всем мультиверсуме” и решает благодаря этому здесь, в нашей Вселенной, любую задачу гораздо быстрее, потому что, в каком-то смысле, получает помощь от других версий самого себя{6}. Мы пока еще не знаем, будет ли пригодный для коммерческого использования квантовый компьютер создан в ближайшие десятилетия, поскольку это зависит и от того, действительно ли квантовая физика работает так, как мы думаем, и от нашей способности преодолеть связанные с его созданием серьезнейшие технические проблемы, но и коммерческие компании, и правительства многих стран мира вкладывают ежегодно десятки миллионов долларов в реализацию этой возможности. Хотя квантовый компьютер не поможет в разгоне заурядных вычислений, для некоторых специальных типов были созданы изобретательные алгоритмы, способные изменить скорость кардинально – в частности, это касается задач, связанных со взломом криптосистем и обучением нейронных сетей. Квантовый компьютер также способен эффективно симулировать поведение квантово-механических систем, включая атомы, молекулы и новые соединения, заменяя измерения в химических лабораториях примерно в том же ключе, в каком расчеты на обычных компьютерах заменили, сделав ненужными, измерения в аэродинамических трубах.
О проекте
О подписке