Читать книгу «Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта» онлайн полностью📖 — Макса Тегмарка — MyBook.
image

Что такое вычисление?

Итак, мы видели, как физический объект может хранить информацию. Но как он может вычислять?

Вычисление – это переход памяти из одного состояния в другое. Иными словами, вычисление использует информацию, чтобы преобразовывать ее, применяя к ней то, что математики называют функцией. Я представляю себе функцию этакой мясорубкой для информации, как показано на рис. 2.5: вы закладываете в нее сверху исходную информацию, поворачиваете ручку, и оттуда вылезает переработанная информация. Вы можете повторять раз за разом одно и то же действие, получая при этом все время что-то разное. Но сама по себе обработка информации полностью детерминирована в том смысле, что если у вас на входе все время одно и то же, то и на выходе вы будете получать все время один и тот же результат.

В этом и заключается идея функции, и хотя такое определение кажется слишком простым, оно до невероятия хорошо работает. Некоторые функции совсем тривиальные, вроде той, что зовется NOT: у нее на входе один бит, и она заменяет его другим, превращая ноль в единицу, а единицу в ноль. Функции, которые мы изучаем в школе, обычно соответствуют кнопочкам на карманном калькуляторе, на входе при этом может быть одно число или несколько, но на выходе всегда одно: например, это может быть x2, то есть при вводе числа выводится результат его умножения на себя. Но есть и исключительно сложные функции. Например, если вы располагаете функцией, у которой на входе произвольное положение фигур на шахматной доске, а на выходе – наилучший следующий ход, то у вас есть шанс на победу в компьютерном чемпионате мира по шахматам. Если вы располагаете функцией, у которой на входе состояние всех финансовых рынков мира, а на выходе – список акций, которые следует покупать, то вы скоро сильно разбогатеете. Многие специалисты по искусственному интеллекту видят свою задачу исключительно в том, чтобы придумать, как вычислять некоторые функции для любых начальных условий. Например, цель машинного перевода заключается в том, чтобы, взяв последовательность бит, представляющую исходный текст на одном языке, преобразовать ее в другую последовательность бит, представляющую тот же текст, но на другом языке, а цель создания систем автоматизированного распознавания изображений заключается в том, чтобы преобразовывать последовательность бит, представляющую какую-то картинку на входе, в последовательность бит, представляющую собой текст, который эту картинку описывает (рис. 2.5).

Рис. 2.5

Каждое вычисление использует информацию на входе, чтобы преобразовывать ее, выполняя над ней то, что математики называют функцией. У функции f (слева) на входе последовательность бит, представляющих число; в результате вычислений она дает на выходе его квадрат. У функции g (в центре) на входе последовательность бит, представляющих позицию на шахматной доске; в результате вычислений она дает на выходе лучший ход для белых. У функции h (справа) на входе последовательность бит, представляющих изображение, в результате вычислений она дает на выходе соответствующую текстовую подпись.


Другими словами, если вы можете вычислять достаточно сложные функции, то вы сумеете построить машину, которая будет весьма “умной” и сможет достигать сложных целей. Таким образом, нам удается внести несколько большую ясность в вопрос о том, как может материя быть разумной, а именно: как могут фрагменты бездумной материи вычислять сложные функции.

Речь теперь идет не о неизменности надписи на поверхности золотого кольца и не о других статических запоминающих устройствах – интересующее нас состояние должно быть динамическим, оно должно меняться весьма сложным (и, хорошо бы, управляемым/программируемым) образом, переходя от настоящего к будущему. Расположение атомов должно быть менее упорядоченным, чем в твердом и жестком теле, где ничего интересного не происходит, но и не таким хаотичным, как в жидкости или в газе. Говоря точнее, мы бы хотели, чтобы наша система восприняла начальные условия задачи как свое исходное состояние, а потом, предоставленная самой себе, как-то эволюционировала, и ее конечное состояние мы бы могли рассматривать как решение данной ей задачи. В таком случае мы можем сказать, что система вычисляет нашу функцию.

В качестве первого примера этой идеи давайте построим из нашей неразумной материи очень простую (но от этого не менее важную) систему, вычисляющую функцию NAND[12] и потому получившую название гейт NAND[13]. У нее на входе два бита, а на выходе один: это 0, если оба бита на входе 1, во всех остальных случая – это 1. Если в одну сеть с батареей и электромагнитом мы вставим два замыкающих сеть ключа, то электромагнит сработает тогда, и только тогда, когда оба ключа замкнуты (находятся в состоянии “on”). Давайте поместим под ним еще один ключ, как показано на рис. 2.6, так что магнит, срабатывая, всякий раз будет размыкать его. Если мы интерпретируем первые два ключа как два бита на входе, а третий – как бит на выходе, то мы и получим то, что назвали гейтом NAND: третий ключ будет разомкнут только тогда, когда первые два замкнуты. Есть очень много более практичных способов сделать гейт NAND – например, с помощью транзисторов, как показано на рис. 2.6. В нынешних компьютерах гейты NAND чаще всего встроены в микросхемы или иные компоненты, выращенные из кристаллов кремния.


Рис. 2.6

Логический вентиль (гейт) NAND по заданным на входе двум битам А и В вычисляет третий бит С в соответствии с правилом: C = 0, если A = B = 1, и C = 0 в любом другом случае, – и посылает его на выход. В качестве гейта NAND можно использовать много различных физических устройств. В электрической цепи на средней части рисунка ключи А и В соответствуют битам на входе со значениями 0 при размыкании и 1 при замыкании. Когда они оба замкнуты, идущий через электромагнит ток размыкает ключ С. На схеме в правой части рисунка битам соответствуют значения потенциалов – 0, когда потенциал равен нулю, и 1, когда потенциал равен 5 вольтам. При подаче напряжения на базы обоих транзисторов (А и В) потенциал в точке С падает практически до нуля.


В информатике есть замечательная теорема, которая утверждает, что гейт NAND универсален: то есть вычисление любой вполне определенной функции[14] может быть осуществлено гейтами NAND, соединенными друг с другом. Так что если у вас есть достаточное количество гейтов NAND, вы можете собрать из них устройство, вычисляющее все что угодно! На случай, если у вас возникло желание посмотреть, как это работает, у меня есть схема (рис. 2.7), на которой вы увидите, как умножаются числа при помощи одних только гейтов NAND.

Исследователи из MIT Норман Марголус и Томмазо Тоффоли придумали слово “computronium” (компьютрониум), обозначающее любую субстанцию, которая может выполнять любые вычисления. Мы только что убедились, что создать компьютрониум не так уж и сложно: эта субстанция всего лишь должна быть способна соединять гейты NAND друг с другом любым желаемым способом. Разумеется, существуют и мириады других компьютрониумов. Например, еще один легко создать из предыдущего, заменив все гейты NAND на NOR: у него на выходе будет 1 только тогда, когда на оба входа подается 0. В следующем разделе мы обсудим нейронные сети, которые также способны выполнять произвольные вычисления, то есть и они ведут себя как компьютрониум. Ученый и предприниматель Стивен Вольфрам показал, что то же может быть сказано о простых устройствах, получивших название клеточных автоматов, которые периодически подправляют каждый бит в зависимости от того, в каком состоянии находятся биты по соседству. А еще в 1936 году Алан Тьюринг доказал в своей ставшей ключевой статье, что простая вычислительная машина (известная сейчас как “универсальный компьютер Тьюринга”), способная оперировать некоторыми символами на бумажной ленте по некоторым правилам, также способна выполнять любые вычисления. Одним словом, материя не просто обладает способностью к любым вполне определенным вычислениям, но и может производить их самыми разнообразными способами.


Рис. 2.7

Любое вполне определенное вычисление может быть выполнено при помощи комбинации гейтов одного-единственного типа NAND. Например, у модулей, выполняющих сложение и умножение и представленных на рисунке выше, на вход подается по два бинарных числа, каждое из которых представлено 4 битами, а на выходе получается бинарное число, представленное 5 битами в первом случае, и бинарное число, представленное 8 битами во втором. Менее сложные модули NOT, AND, XOR и “+” (сложение трех одиночных битов в бинарное число, представляемое 2 битами) комбинируются из гейтов NAND. Полное понимание этой схемы исключительно сложно и абсолютно не нужно для дальнейшего чтения книги; я поставил ее здесь исключительно для иллюстрации идеи универсальности, ну и потакая своему внутреннему гику.


Как уже говорилось, Тьюринг в своей памятной статье 1936 года доказал также кое-что значительно более важное: если только компьютер обладает способностью производить некий весьма незначительный минимум операций, он универсален – в том смысле, что при достаточном количестве ресурсов он может сделать все то, на что способен любой другой компьютер. Он доказал универсальность “компьютера Тьюринга”, а приближая его к физическому миру, мы только что показали, что семейство универсальных компьютеров включает в себя такие разные объекты, как сеть гейтов NAND или сеть соприкасающихся нейронов. Более того, Стивен Вольфрам заявил, что большая часть нетривиальных физических систем, от меняющейся погоды до мыслящего мозга, становятся универсальным компьютером, если позволить им как угодно менять свои размеры и не ограничивать их во времени.

Этот самый факт – а именно, что одно и то же вычисление может быть произведено на любом универсальном компьютере, как раз и означает, что вычисление не зависит от субстрата в том же самом отношении, в каком от него не зависит информация: каков бы физический субстрат ни был, оно живет там свою жизнь. Если вы – суперумный персонаж какой-то компьютерной игры будущего, обладающий сознанием, вам никогда не удастся узнать, породила ли вас рабочая станция под Windows, MacBook под MacOS или смартфон с Android, потому что вы субстрат-независимы. У вас не окажется и никаких способов определить, какого рода транзисторы используются микропроцессором этого компьютера.



1
...
...
15