Цитаты из книги «Об ИИ без мифов. Путеводитель по истории Искусственного Интеллекта» Леонида Черняка📚 — лучшие афоризмы, высказывания и крылатые фразы — MyBook. Страница 5
image
Через три года после публикации Шеннона на 8-й Конференции Мэйси британец Дональд Маккей (Donald MacKay, 1922–1987) представил свой альтернативный подход, отличающийся учетом семантической природы информации. Он отметил, что видит проблему передачи информации не только в обеспечении физики для поддержки потока символов от передатчика приемнику, но и в передаче семантики того, что передается. А главное, он определял информацию, принимая в расчет не только передающую, но и получающую сторону, которая тоже изменяет свое информационное состояние после получения сообщения.
17 ноября 2022

Поделиться

Достоинство трактовки информации по Шеннону в ее формальности, а ее недостаток – в привязанности исключительно к коммуникациям без учета смысловой нагрузки сообщения. Она вполне адекватна задачам, связанным с оценкой пропускной способности каналов, потерей данных в процесс передачи и другим, относящимся к коммуникациям, где содержание сообщения не учитывается, но такой подход к инфломации не имеет никакого отношения к решению содержательных задач, например, проблемы Big Data.
17 ноября 2022

Поделиться

значение. К тому же Шеннон, оперируя понятием энтропия, предостерегал своих последователей от чрезмерного теоретизирования при трактовке энтропии. Настороженное отношения автора к введенному им понятию была объясняется тем, что он был не вполне самостоятелен при выборе этого термина. Хорошо известен и неоднократно описан тот факт, что он находился под влиянием обладавшего огромным авторитетом и фантастической харизмой Джона фон Неймана. Так вот, это фон Нейман навал шенновскую теорию передачи данных теорией информации. А еще он внушил Шеннону необходимость введения понятия информационной энтропии следующим образом: «Во-первых, это название использовано в нескольких физических дисциплинах, значит у нее уже есть имя. Во-вторых, и что не менее важно, никто не знает, что такое энтропия в этом контексте, это даст вам преимущество в любой дискуссии». Удивительно, но через несколько лет сам Шеннон поступил подобным образом, он посоветовал Норберту Виннеру использовать термин кибернетика с аналогичной аргументаций.
17 ноября 2022

Поделиться

Основоположником того, что прямо скажем так, не совсем удачно названо и продолжают называть теорией информации, стал Клод Шеннон. Он обобщил работы предшественников и сформулировал основные положения того, что он сам назвал математической теории связи в одноименной статье (A Mathematical Theory of Communication, 1948), заметим, не теорией информации! От работ предшественников позицию Шеннона главным образом отличает углубленное представление информационной энтропии, как меры хаотичности информации. Предельно упрощая, информационная энтропия – это то, насколько много информации вам не известно о системе. Под информацией Шеннон понимал лишь сигналы, несущие содержание, которое распознает получатель, роль которого он не принимал во внимание. В процессе передачи данных изначальная энтропия уменьшается, поэтому сумма оставшейся энтропии и переданной информации равна начальной. Хотя Шеннон и оперирует понятием информации, точного определения он не предлагает, впрочем, оговаривая, что сообщения могут иметь какое-то
17 ноября 2022

Поделиться

по аналогии с нефтью данные – это сырье, а потребляются продукты переработки данных, то есть является полезная человеку информация, она имеет потребительную стоимость.
17 ноября 2022

Поделиться

На протяжении десятилетий развивались методы, обеспечивающие передачу, хранение и обработку данных, без учета связи между данными и хранящихся в них информации и знаний.
17 ноября 2022

Поделиться

получаемых средствами различных цифровых технологий в XXI веке. За короткий срок оно лавинообразно возросло, но средства извлечения из этих данных полезной информации заметно отстали. Отмеченное рассогласование возникло по очевидной причине – за все годы существования так называемых информационных технологий, которые на самом деле имеют дело с данными, а вовсе не с информацией, о самостоятельной роли данных почти никто не задумывался.
17 ноября 2022

Поделиться

Big Data относится к числу немногих названий, имеющих вполне достоверную дату своего рождения – 3 сентября 2008 года, в этот день вышел специальный номер научного журнала Nature,посвященный ответам на вопрос «Как могут повлиять на будущее науки технологии работы с большими объемами данных?». Ситуация, связанная с Big Data, вылилась в проблему из-за сложившегося дисбаланса между количеством данных
17 ноября 2022

Поделиться

аналитики солидарны в том, что в рамках Слабого AI реальные шансы на успех есть у двух у направлений: одно усиливает возможности зрительного восприятия и получило название компьютерного зрения (Computer Vision, CV), в второе многократно повышает способность человека при работе с текстом на естественном языке (Natural Language Processing, NLP). На их основе уже созданы и создаются инструментальные средства, обеспечивающие автоматизацию рутинных составляющих умственного труда. По классификации, приведенной в главе 1, CV и NLP относится к типу AI, усиливающему способности человека (Augmented AI, AuI), а именно, они помогают ему в извлечении полезной информации из больших объемов данных, получаемых из внешней среды. В первом случае источник данных, прежде всего, фото и видеосъемка, во втором источники текста чаще всего в интернете. Совместно они обеспечивают решение проблемы Больших данных (Big Data).
17 ноября 2022

Поделиться

способности человека, поэтому есть потребность в создании интерактивных систем нового уровня, сохраняющих человека в контуре управления (human in the loop). Появление технологий AI позволяет решить обе эти проблемы.
17 ноября 2022

Поделиться

1
...
...
18