Цитаты из книги «Об ИИ без мифов. Путеводитель по истории Искусственного Интеллекта» Леонида Черняка📚 — лучшие афоризмы, высказывания и крылатые фразы — MyBook. Страница 4
image
Собственно термин data mining был предложен в середине 80-х Робертом Хехт-Нильсеном (Robert Hecht-Nielsen, 1947–2019) основателем компании HNC (Hecht-Nielsen Neurocomputer Corporation), позже она вошла в состав компании FICO, признанного крупнейшего финансового аналитика. HNC первой разрабатывала ПО для прогнозов, основанное на нейронных сетях. В нем моделировалось распознавание информации, скрытой в данных, по образу и подобию человеческого сознания. Эти разработки имели оборонное назначение, что естественно для компании, находящейся в Сан-Диего, центре ВМС США, но позже областью приложения стала финансовая индустрия, страхование, розничная торговля. Современный интеллектуальный анализ данных имеет в основе три составляющие – собственно данные, извлекаемая из данных информация и полученные из данных знания.
17 ноября 2022

Поделиться

Крупнейший специалист в области баз данных Джим Грей (James Gray, 1944 – признан погибшим в 2012) радикально переосмыслил роль данных. За несколько недель до своего бесследного исчезновения на борту яхты у Калифорнийского побережья (2007) он выступил с речью, в которой представил свои соображения о качественных изменениях в современной науке, связанных с возможностью собирать и анализировать большие объемы экспериментальных данных. Для характеристики нового периода в науке Грей использовал термин «четвертая парадигма» (fourth paradigm). По Грею, тремя предыдущими парадигмами были экспериментальная, теоретическая и вычислительная.
17 ноября 2022

Поделиться

объединяющий методы, процессы, алгоритмы, системы и другие средства, служащие для извлечения информации из сырых данных, в том числе структурированных и не структурированных. DS объединяет Data mining (иногда переводится как Интеллектуальный анализ данных или Добыча данных), Большие данные, CV и NLP как методы, используемые для извлечения информации из изображений и текстов.
17 ноября 2022

Поделиться

У DS находится общее с кибернетикой, это тоже не традиционная наука в науковедческом представлении, а междисциплинарный подход
17 ноября 2022

Поделиться

Интерес к данным привел к созданию того, что назвали Data Science.
17 ноября 2022

Поделиться

• Знания (information) получаются в результате синтеза полученной информации с человеческим разумом, служат для приятия решений, ведущих к достижению заданных целей. • Глубокое понимание (wisdom) служит основой для принятия решений. Практически все, что называют умственным трудом, укладывается в пирамиду DIKW – работающий в этой сфере получает данные из внешнего мира, извлекает из них информацию, осмысливает ее переводит в знания и выбирает те знания, которые требуются для принятия решений.
17 ноября 2022

Поделиться

Рассел Аккофф (Russell Ackoff, 1919–2009), специалист в области исследования операций и теории систем предложил четырехуровневую иерархическую модель (четырехзвенную модель) DIKW (data, information, knowledge, wisdom), связывающую данные, информацию, знания и здравый смысл, основанный на глубоком познании. • Данные (data) получаются из внешнего мира в результате человеческой деятельности с использованием тех или иных устройств. • Информация (information) создается посредством анализа отношений и взаимосвязей между фрагментами данных в результате ответа на вопросы: Кто? Что? Где? Сколько? Когда? Почему? Цель анализа – помещение данных в контекст.
17 ноября 2022

Поделиться

Взаимосвязь между данными и информацией намного сложнее, чем может показаться. Сами по себе данные, как набор байтов, не имеют никакого смысла, но те же данные, поставленные в контекст, превращаются в информацию. Роберт Сейнер (Robert Seiner), один из ведущих специалистов по работе с данными, издатель бюллетеня The Data Administration Newsletter (TDAN.com) дал следующее определение: «Данные плюс метаданные равняется информация» (Data plus metadata equals the information). Такое упрощенное определение информации допустимо в приложении к текстам или изображениям, в том случае, если их можно снабдить метаданными. Однако есть и иные типы данных, которые необходимо превращать в информацию без привлечения специальным образом подготовленных метаданных, для этого требуется знания и интуиция человека. Такие данные-изображения, полученные в результате различного рода экспериментальных исследований, таких как медицинские обследования, съемки земной поверхности или каких-то иных опытов. В качестве примера принимающей стороны можно привести врача-диагноста, рассматривающего рентгеновские или другие снимки, или геофизика перед которым лежат результаты полевой съемки. Изображения не имеют никакого содержательного смысла для непосвященного, но чем выше уровень квалификация специалиста, анализирующего эти изображения, чем больше, условно говоря, метаданных он может извлечь из своего сознания, тем содержательнее оказываются данные. Иногда такие скрытые метаданные называют латентными или интеллектуальными (Latent metadata, Intellectual metadata). В значительной мере целью образования является обучение специалистов к работе со скрытыми метаданными.
17 ноября 2022

Поделиться

За последние 20–30 лет представления многих ученых еще дальше отошли от шенноновских канонов. Они рассматривают информацию как системообразующий фактор, например весь живой мир основан на передаче генетической информации, ее еще называют biotic information. Информация в живом организме является частью его материальной системы, в нем чрезвычайно сложно отделить информационную составляющую от материальной. Известно, что за 5–7 лет меняются все клетки человеческого организма, но при этом человек остается самим собой за счет сохранения его информационного «скелета». Сложность информационного устройства живого делает невозможным реплицирование человека, поскольку даже однояйцевые близнецы различаются между собой, даже они не взаимно тождественны друг другу. По-видимому, одна из фундаментальных ошибок сторонников Сильного AI, допускающих создание искусственного разума, превосходящего по своим возможностям человеческий, заключается в том, что они отделяют информационную составляющую от биологической. Примерно то же самое относится к природным социальным, культурным и лингвистическим системам. Информация, содержащаяся в них, относится не к селективной по Шеннону, а к структурной по Маккею.
17 ноября 2022

Поделиться

передачи данных, если принимающая сторона не смогла перевести их в информацию? Нет ничего удивительного в том, что математикам, составлявшим среди участников конференции Мэйси большинство, формально строгая позиция Шеннона, бывшего к тому же одним из организаторов конференции, представлялась более сильной. Ничто из сказанного Маккеем не поддавалось количественной оценке, в итоге шенноновское воззрение на информацию восторжествовало и надолго. После конференции, чтобы уточнить свою позицию, Маккей предложил называть информацию по Шеннону селективной «selective information» от английского select (выбор), потому что здесь сообщение образуется посредством выбора из множества элементов энтропии. Свой же подход Маккей называл структурным (structural information). В структурную информацию Маккей включает шенноновскую селективную информацию, но для связи со смыслом она должна быть дополнена теми или иными вспомогательными данными, которую он называет метакоммуникацией (metacommunication). Семантическая составляющая метакоммуникации позволяет получателю (человеку или обученной нейросети) интерпретировать селективную информацию. Формы метакоммуникации могут быть совершенно различными – от тривиальной разметки, доступной для «понимания» относительно несложным программам, до такой, которая включает предварительно известные человеку знания и использует механизмы рефлексии, свойственные человеку. Такая информация может приобретать субъективные качества. По существу метакоммуникации мало отличаются от метаданных, о них ниже.
17 ноября 2022

Поделиться

1
...
...
18