Читать книгу «65 ½ (не)детских вопросов о том, как устроено всё» онлайн полностью📖 — Кирилл Половников — MyBook.

Вопрос 5. В чем смысл трех законов Ньютона?

Физика – это точная наука. Поэтому, помимо качественного описания воздействия сил на физические тела, нужны количественные оценки этого воздействия. А для этого нужен математический аппарат (т. е. формулы) для точного описания меры этого воздействия и связи сил с другими физическими величинами. Именно это и делают три закона Ньютона. Давайте разберемся, что это за законы и в чем их суть.

Первый закон Ньютона по сути представляет собой тот самый закон инерции, открытый Галилеем, о котором мы говорили в предыдущей главе (стр. 24). Одна из возможных формулировок первого закона гласит: если на тело не действуют никакие силы (либо равнодействующая всех сил равна нулю), то тело будет находиться в состоянии покоя либо двигаться равномерно и прямолинейно.

Это утверждение не только о том, что состояние покоя и равномерного прямолинейного движения являются естественными, но и о том, что эти два состояния физически эквивалентны. Более подробно эту идею мы обсудим в следующей главе, отвечая на вопрос «Что такое относительность?» (стр. 32).

Второй закон Ньютона формулируется уже на математическом языке, так что с его помощью можно рассчитать все характеристики движения. Его можно сформулировать в следующем виде: если на тело действует какая-то сила, то ускорение, которое оно приобретет, будет прямо пропорционально этой силе и обратно пропорционально массе этого тела. Однако всем школьникам этот закон гораздо более знаком в виде формулы:


где F – это сила, m – масса, а – ускорение, которое показывает, как быстро изменяется скорость тела. Стрелочки над буквами означают векторные величины, потому что сила и ускорение, помимо численного значения, также имеют направление.

Для решения таких уравнений Ньютону пришлось разработать совершенно новый математический аппарат – интегральное и дифференциальное исчисление (другое название – математический анализ). На этом новом математическом языке второй закон Ньютона представляет собой дифференциальное уравнение, поскольку ускорение – это производная от скорости, а скорость – это производная от координаты. Следовательно, зная силу, действующую на тело, и решая это дифференциальное уравнение, мы можем узнать координату и скорость тела в любой момент времени. Т. е. чтобы описать движение любого тела, достаточно знать всего лишь силу, которая на него действует.

Из второго закона Ньютона также следует, что чем тело тяжелее (чем больше его масса), тем сложнее будет его разогнать, или затормозить, или просто изменить траекторию его движения. Например, если вы приложите одну и ту же силу к лежащему на полу теннисному мячику и к тяжелому шару для боулинга, то они разгонятся по-разному, приобретут разные скорости. Равно как и в случае, если они летят вам навстречу, остановить теннисный мячик вам будет гораздо легче, на это потребуется гораздо меньшая сила.

Но как быть в случае, когда на тело действует не одна сила, а сразу несколько? Какую из них нужно подставлять в формулу второго закона Ньютона? Рассмотрим, к примеру, лежащую на столе книгу. На нее действует две силы: гравитация и сила реакции опоры (она же сила упругой деформации стола). Какая из этих сил определит ускорение книги? Оказывается, что обе. А точнее – их равнодействующая, т. е. векторная сумма всех действующих на книгу сил. А поскольку обе эти силы равны по величине и противоположны по направлению, то их равнодействующая равна нулю. Следовательно, никакого ускорения наша книга испытывать не будет, а будет продолжать лежать на столе, и мы сможем спокойно ее читать. Однако с чего мы взяли, что сила тяжести и сила реакции опоры равны? А это следует из третьего закона.

Третий закон Ньютона: два тела могут действовать друг на друга только силами, направленными вдоль одной прямой, причем эти силы равны по модулю и противоположны по направлению. Или в более простой и знакомой формулировке: сила действия равно силе противодействия. Это означает, что силы в природе всегда возникают парами: если тело А воздействует на тело Б некоторой силой, то в тот же самый момент тело Б подействует на тело А точно такой же силой, но направленной в противоположную сторону. Поэтому наша книга, которая давит на стол своим весом, заставляет этот стол сопротивляться этому давлению – так возникает сила реакции опоры. Вы можете и сами поэкспериментировать: надавите ладонью на стол, только не очень сильно. Что вы почувствуете? Стол будет сопротивляться и давить в ответ, но тоже не очень сильно. А если теперь увеличить силу давления? В ответ стол также увеличит силу своего сопротивления. Так что чем сильнее вы давите на стол, тем больше будет сила его реакции.

Но почему же тогда при падении, например, нашей книги на поверхность Земли ускоряется именно книга, а Земля не ускоряется? Ведь сила действия (сила притяжения книги Землей) должна быть равна силе противодействия (силе притяжения Земли книгой)? На самом деле ускоряется, просто мы этого не замечаем. И дело тут в массе этих двух тел. Поскольку масса Земли в миллиарды триллионов раз больше массы книги, то и ускорение, которое приобретает Земля, будет в миллиарды триллионов раз меньше ускорения книги, так что мы его вообще не сможем никак зафиксировать. А значит, можно говорить о том, что Земля в этом процессе остается неподвижной.

Вопрос 6. Что такое относительность?

На самом деле относительность придумал не Эйнштейн. Более того, долгое время он настаивал, чтобы его теорию называли не теорией относительности, а теорией инвариантности, поскольку в ее основе лежит принцип инвариантности (т. е. неизменности) всех физических законов при переходе из одной инерциальной системы отсчета в другую, а также в теорию вводится некоторая величина, инвариантная (т. е. не изменяющаяся) при таких переходах. Тем не менее идея относительности играет очень важную роль не только в теории Эйнштейна, о которой мы будем говорить в Части 5 (стр. 199), но и в классической механике. Поэтому давайте остановимся на этом понятии немного подробнее.

Представим, что вы сидите в кресле самолета. Перед вами на откидном столике лежит книга. Самолет летит со скоростью 800 км/ч. Вопрос: какая скорость будет у книги? Тут возможны, как минимум, два ответа. Во-первых, поскольку книга лежит прямо перед вами и никуда не движется, то ее скорость должна быть равна нулю. Во-вторых, поскольку эта книга находится вместе с вами в самолете, летящем со скоростью 800 км/ч, то и всё, что находится внутри самолета, также должно двигаться со скоростью 800 км/ч. Так какая же на самом деле у книги скорость: ноль или 800 км/ч? Ответ зависит от того, из какой системы отсчета мы за этой книгой наблюдаем. Если изнутри салона самолета, то скорость ее будет равна нулю; а если наблюдать за ней с земли – то 800 км/ч. Так что никакой скорости-самой-по-себе у книги нет, это величина относительная и в разных системах отсчета может принимать разные значения[3].

Давайте теперь спустимся с небес на землю и представим, что вы сидите в кресле современного поезда (достаточно современного, чтобы при его движении вы не ощущали никаких покачиваний). Если шторы на окнах будет плотно закрыты и не будет слышно стука колес, то будучи внутри вагона и не получая никаких сигналов извне (например, от GPS-навигатора) никакими экспериментами вы не сможете определить, движется ваш поезд или стоит на месте. Даже если скорость поезда будет 200 км/ч, абсолютно всё внутри вагона будет происходить так, как если бы он стоял на месте. В реальности мы понимаем, что поезд движется, только по стуку колес и небольшим колебаниям вагона (из-за неровностей рельс и неравномерного движения самого поезда). Если бы этих неровностей не было, то мы бы вообще не понимали, что происходит с нашим поездом.

Или другой пример. Наверняка вы хоть раз в жизни сталкивались с такой ситуацией: сидите вы в вагоне поезда, рядом с вами за окном стоит второй поезд так, что остальной пейзаж вам не виден. И вот вы замечаете, что поезд за окном начал двигаться. После чего несколько секунд вы не можете понять – то ли это ваш поезд поехал (и вы вместе с ним), то ли вы стоите на месте, а движется поезд за окном. И только посмотрев на другие объекты, находящиеся снаружи: на рельсы, землю, деревья – вы можете понять, кто на самом деле движется. Почему так происходит? Это точно не обман зрения и не оптическая иллюзия, а фундаментальный физический факт: состояние покоя и состояние равномерного прямолинейного движения неразличимы.

Действительно, все законы физики одинаковы и в вашем движущемся вагоне, и на поверхности Земли[4]. В этом суть принципа относительности. Его впервые сформулировал еще Галилей в своих «Беседах». Он заметил, что никакими опытами невозможно различить состояния покоя и равномерного прямолинейного движения (только в своих рассуждениях он использовал не вагон поезда, поскольку никаких поездов тогда еще не было, а трюм корабля):

«Уединитесь с кем-либо из друзей в просторное помещение под палубой какого-нибудь корабля, запаситесь мухами, бабочками и другими подобными мелкими летающими насекомыми; пусть будет у вас там также большой сосуд с водой и плавающими в нем маленькими рыбками; подвесьте, далее, наверху ведерко, из которого вода будет падать капля за каплей в другой сосуд с узким горлышком, подставленный внизу. Пока корабль стоит неподвижно, наблюдайте прилежно, как мелкие летающие животные с одной и той же скоростью движутся во все стороны помещения; рыбы, как вы увидите, будут плавать безразлично во всех направлениях; все падающие капли попадут в подставленный сосуд… Заставьте теперь корабль двигаться с любой скоростью – и тогда (если только движение будет равномерным и без качки в ту и другую сторону) во всех названных явлениях вы не обнаружите ни малейшего изменения и ни по одному из них не сможете установить, движется ли корабль или стоит неподвижно. Прыгая, вы переместитесь по полу на то же расстояние, что и раньше, и не будете делать больших прыжков в сторону кормы, чем в сторону носа, на том основании, что корабль быстро движется, хотя за то время, как вы будете в воздухе, пол под вами будет двигаться в сторону, противоположную вашему прыжку; … капли, как и ранее, будут падать в нижний сосуд, и ни одна не упадет ближе к корме, хотя, пока капля находится в воздухе, корабль пройдет много пядей»[5].

Конечно, скорость тела и траектория его движения сильно зависят от того, по отношению к какой системе отсчета рассматривается это движение. К примеру, капли внутри движущегося корабля будут падать вертикально вниз, а при наблюдении с земли мы увидим, что капли, помимо вертикального падения, также смещаются вперед вместе со всем кораблем. Тем не менее законы механики (те самые три закона Ньютона), описывающие это движение, остаются неизменными (инвариантными) во всех инерциальных системах отсчета. Нужно только преобразовать координаты из одной системы отсчета в другую. Этот принцип лежит в основе всей классической механики и называется принципом относительности Галилея. К нему также прилагаются правила преобразования, которые нужно выполнить при переходе из одной инерциальной системы отсчета в другую. Они также получили название преобразований Галилея.

Проиллюстрируем на примере, как работают преобразования Галилея. Если вы побежите со скоростью 10 км/ч навстречу поезду, который движется со скоростью 90 км/ч (в реальной жизни, конечно, лучше никогда так не делать), то вы будете сближаться со скоростью 90 + 10 = 100 (км/ч), т. е. ваши скорости будут просто складываться. А если вы осознаете всю опасность такого поведения, развернетесь на 180° и начнете убегать от поезда со скоростью 20 км/ч (хотя на самом деле лучше будет просто сойти с рельсов и пропустить этот поезд), то вы уже будете сближаться со скоростью 90–20 = 70 (км/ч), также в соответствии с преобразованиями Галилея.

Однако к концу XIX века обнаружилось, что такое правило сложения скоростей не работает в электродинамике. Из уравнений Максвелла следовало, что скорость всех электромагнитных волн (в том числе света) должна быть всегда одной и той же, независимо от того, в какой системе отсчета вы находитесь. Оказалось, что не важно, движетесь ли вы навстречу световой волне или, наоборот, удаляетесь от нее, вы всегда должны сближаться с одной и той же скоростью – со скоростью света. Это противоречие классической механики и электродинамики послужило толчком к созданию абсолютно новой физики, полностью перевернувшей наши представления о пространстве и времени, материи и энергии – теории относительности. Но об этом мы поговорим уже в Части 5, посвященной теории относительности (стр. 199).