Поскольку механика изучает движение тел и взаимодействия между ними, то хорошо бы понять, что заставляет тела двигаться и как различные взаимодействия влияют на их движение. Для этого в физике используется понятие силы – одно из ключевых в классической механике.
Если мы спросим обычных людей, что такое сила, то скорее всего в качестве ответа услышим что-то про силу притяжения к Земле, которая не дает нам улететь с ее поверхности. То есть Земля создает силу, которая тянет нас вниз. Помимо гравитации, в природе также существует множество других сил (о них мы поговорим чуть позже). Все они отличаются друг от друга как своей природой, так и механизмами воздействия на разные предметы. Но как мы вообще понимаем, что на тело воздействует какая-либо сила? Только по двум возможным проявлениям:
1) тело изменяет свою скорость – при движении поворачивает в другую сторону, начинает ускоряться или замедляться либо просто начинает двигаться, если до этого покоилось;
2) тело изменяет свою форму – сжимается, растягивается или как-то иначе деформируется.
Например, если я возьму мяч и сожму его в руках, то форма мяча изменится, он станет уже не круглым, а чуть сплюснутым. Причиной этой деформации будет сила моих мышц. Или если я подниму мяч над землей и отпущу, то он начнет падать, постоянно ускоряясь, т. е. его скорость под действием силы притяжения Земли начнет увеличиваться. Это два примера того, как можно зафиксировать, что на мяч действует какая-либо сила.
Но что, если я просто положу мяч на пол? Он будет спокойно лежать на полу и никуда не будет двигаться. То есть мяч не деформируется, его скорость не изменяется. Но ведь при этом гравитация Земли не перестала на него действовать. Почему же тогда он ведет себя так, будто никакой силы притяжения не существует? А дело тут в том, что под весом мяча пол немного деформируется, так что возникает еще одна сила, равная по величине силе тяжести[1], но направленная в противоположную сторону. Получается, что сила тяжести тянет мяч вниз, а сила упругой деформации давит на мяч, отталкивая его от пола вверх. Эти силы компенсируют друг друга, в итоге результирующая сила оказывается равной нулю, и мяч продолжает лежать на месте. Поэтому при описании поведения различных тел мы должны учитывать сразу все силы, действующие на эти тела.
Рассмотрим еще один пример. Если взять металлическую пружину и подвесить к ней небольшой груз, т. е. подействовать на один из ее концов силой, равной весу груза, то пружина растянется. Причем (и это экспериментальный факт) величина деформации пружины пропорциональна весу груза: если мы подвесим груз в два раза тяжелее, то пружина растянется в два раза больше, а если подвесить груз в пять раз легче, то пружина растянется в пять раз меньше. Этот закон в 1660 году открыл английский ученый Роберт Гук (1635–1703), благодаря чему у физиков появилась возможность измерять величину абсолютно любой силы. Для этого достаточно приложить измеряемую силу к одному из концов пружины и измерить, насколько деформировалась эта пружина. Такой прибор называется динамометр, а принцип его работы лежит в основе конструкции практически всех весов[2], которые на самом деле измеряют не массу тела, а его вес, т. е. силу притяжения со стороны Земли.
Но можно не подвешивать груз к динамометру, а растягивать пружину своими руками или прицепить ее конец к автомобилю и попытаться на нем сдвинуться с места. В обоих этих случаях пружина будет растягиваться и, соответственно, динамометр покажет величину силы наших рук или силу тяги двигателя автомобиля. Таким образом можно поступить с любой силой. Так что теперь мы можем сказать, что сила – это физическая величина, характеризующая меру воздействия одних тел на другие (о существовании таких воздействий мы судим по изменению скорости или деформации) и измеряемая при помощи динамометра.
В предыдущей главе мы рассмотрели несколько примеров сил – гравитацию, силу упругой деформации, мышечную силу и силу тяги двигателя автомобиля. В школе, помимо этих сил, также изучают силу трения, силу реакции опоры, магнитную силу и многие другие. Но сколько всего различных сил существует в природе? Наверняка ведь не бесконечное множество? Оказывается, в нашем мире, по большому счету, всего четыре. Это так называемые фундаментальные силы или фундаментальные взаимодействия: гравитация, электромагнетизм, сильное и слабое ядерные взаимодействия. Каждую из этих сил мы рассмотрим отдельно и более подробно в соответствующих главах этой книги: гравитации посвящена Часть 5, электромагнетизму – Часть 2, а сильное и слабое взаимодействия мы обсудим в Части 6. Все остальные силы, с которыми мы можем столкнуться, являются производными от какой-то из этих четырех.
Например, сила упругости возникает из-за того, что при деформации твердого тела молекулы, из которых оно состоит, немного смещаются, и между ними начинают действовать электромагнитные силы, стремящиеся вернуть их в исходное положение. Так что сила упругости – это не самостоятельная сила, а производная от электромагнитной, это просто сумма миллиардов и триллионов электрических сил, действующих между отдельными молекулами деформированного тела. Посчитать и просуммировать все эти микроскопические взаимодействия, конечно же, невозможно. Поэтому для практических расчетов используют не силы, действующие между отдельными молекулами, а их результирующую сумму и называют ее силой упругости.
Другой пример – сила Архимеда. Это та самая сила, которая выталкивает предметы из воды и не дает утонуть даже очень большим и тяжелым кораблям. Также благодаря ей происходит конвекция: теплый (и менее плотный) воздух поднимается вверх, а холодный (более плотный) опускается вниз. Действие силы Архимеда обусловлено гравитацией и силами упругости, возникающими в жидкости при ее сжатии под действием гравитации. Поэтому в состоянии невесомости (например, на космической станции) эта сила не действует и там из воды никакие предметы не выталкиваются.
Или еще пример – мышечная сила. Откуда она берется? Напряжение мышц вызывается силами упругости, создаваемыми нашими костями и мышцами. А эти силы упругости опять же имеют электромагнитное происхождение.
Конечно, возможно, в природе существуют еще какие-то силы, о которых мы не знаем. Но чтобы это утверждать, необходимо предъявить примеры воздействия этих сил, которые невозможно объяснить на основе четырех уже известных. Если будет обнаружено явление, при котором какое-либо физическое тело, лежащее без движения, вдруг начинает двигаться или менять свою форму, но при этом на него не будет действует ни одна из четырех известных сил (либо их производных), то только тогда мы сможем утверждать, что зафиксировали действие какой-то новой силы. Однако пока никаких процессов, в которых участвуют какие-то неизвестные науке взаимодействия, обнаружить не удалось. Только эти четыре фундаментальные силы.
Представим себе, что автомобиль начинает движение и разгоняется до скорости 50 км/ч. Почему его скорость увеличивается? Потому что на него действует сила тяги двигателя. Но что будет, если теперь автомобиль выключит двигатель и эта сила перестанет действовать? Опыт нам подсказывает, что автомобиль начнет замедляться и в итоге остановится. И так будет происходить со всеми движущимися телами – рано или поздно, когда действие вынуждающий силы прекращается, все они останавливаются. Чтобы движение продолжалось, тело нужно постоянно тянуть или подталкивать. Поэтому наш повседневный опыт нам говорит, что естественным состоянием любого тела (когда на него не действует никакая сила) является состояние покоя. Именно так думал один из величайших мыслителей, древнегреческий философ Аристотель (384–322 г. до н. э.), а вслед за ним эту мысль повторяли и многие поколения ученых вплоть до XVII века.
Но оказалось, что не всё так просто. Ведь мы же знаем, что любое изменение скорости (как ускорение, так и замедление) есть результат действия некоторых сил. Значит, на автомобиль действует какая-то сила, которая вынуждает его снижать скорость и в итоге остановиться. Эта сила называется силой трения. Именно из-за нее все движущиеся на Земле тела через какое-то время останавливаются. Если бы ее не было, то наш автомобиль продолжал бы катиться до тех пор, пока во что-нибудь не врезался. В физике это стремление всех тел оставаться в состоянии покоя либо равномерного и прямолинейного движения называется инерцией.
Эту мысль впервые осознал Галилео Галилей (1564–1642), выдающийся итальянский физик, астроном, основатель экспериментальной физики, да и всей классической механики. Он провел множество экспериментов, в которых скатывал шары по наклонным поверхностям и фиксировал изменение положения и скорости шаров. Оказалось, что при движении вниз скорость шаров постоянно увеличивается, а при движении вверх – постоянно уменьшается. Причем чем больше сделать угол наклона поверхности, тем больше будет ускорение шаров Т. е., если мы запускаем шар вверх по наклонной плоскости, сообщив ему какую-то начальную скорость, то с каждой секундой он будет катиться все медленнее. Но если наклон сделать меньше, то и торможение будет не таким быстрым. В пределе, если наклон вообще исключить, то по ровной поверхности шар будет двигаться с постоянной скоростью, не тормозя и не разгоняясь. Так что без воздействия вынуждающей или тормозящей силы шар должен двигаться с постоянной скоростью. Получается, что равномерное и прямолинейное движение, когда скорость тела не меняется ни по величине, ни по направлению, – это тоже в каком-то смысле естественное состояние. Движущееся тело никогда не остановится, если на него не подействует какая-то внешняя сила.
Проиллюстрируем этот принцип на всем знакомом примере. Когда мы идем куда-то по своим делам и не смотрим себе под ноги, то можем не заметить препятствие на земле, и наш ботинок может зацепить за какой-то предмет. Тогда наши ноги провзаимодействуют с этим предметом и резко потеряют свою скорость. А верхняя часть нашего тела, в том числе голова, будет стремиться остаться в исходном состоянии и продолжить свое движение вперед. Получается, что наши ноги остаются на месте, а голова движется вперед. Это очень неустойчивое состояние, поэтому мы и падаем.
Галилей продолжал свои исследования до глубокой старости. Уже будучи слепым стариком, находясь под домашним арестом за свои еретические высказывания об устройстве мира, противоречащие учению церкви, он пишет одну из самых важных книг в истории физики нового времени – «Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению». В ней Галилей формулирует ключевые идеи и методологические принципы, которые впоследствии легли в основу всей классической механики. Втайне от инквизиции он пересылает рукопись книги в Голландию, где в июле 1638 года ее наконец-то печатают.
Книга произвела настоящий фурор в научной среде. Впервые ученый так смело излагает свои идеи, не ссылаясь ни на учение Аристотеля, ни на библейские тексты, а только на свои собственные наблюдения и эксперименты. Поскольку только эксперимент может подтвердить или опровергнуть любое теоретическое суждение. В этом состоит еще одна из несомненных заслуг Галилея – именно он ввел в науку требование экспериментальной проверки любых гипотез. Какими бы логичными и убедительными нам ни казались те или иные суждения, без экспериментальной проверки их нельзя принимать просто на веру (даже если их высказал Аристотель или еще какой-то признанный авторитет).
О проекте
О подписке