Читать книгу «Бозон Хиггса. От научной идеи до открытия частицы Бога» онлайн полностью📖 — Джима Бэгготта — MyBook.



Есть искушение попытаться представить себе, как выглядят эти ориентации на самом деле, однако не стоит ему поддаваться. При этом их эффекты вполне реальны. Спин определяет величину момента импульса у электрона – момента, связанного с «вращательным» движением спина. Спин также управляет взаимодействием электрона с магнитным полем. Эти эффекты можно досконально исследовать в лаборатории. Но, говоря о квантовой механике, такое впечатление, что мы перешагнули грань между тем, что можно узнать о происхождении этих эффектов, и тем, чего нельзя.

Релятивистская квантовая теория электрона Дирака также дала вдвое больше решений, чем, по его мнению, было нужно. Два решения соответствуют двум ориентациям электронных спинов. Чему же соответствуют два «лишних» решения? У Дирака были кое-какие свои идеи, но в конце концов в 1931 году он был вынужден признать, что они представляют ориентации спина вверх и вниз неизвестного до тех пор положительно заряженного электрона. Дирак открыл антивещество. Античастица электрона, названная позитроном, впоследствии была обнаружена в экспериментах с космическими лучами, так как она образуется в околоземном пространстве при столкновениях высокоэнергетических частиц.

В 1932 году нашелся, как казалось, последний кусочек головоломки. Английский физик Джеймс Чедвик открыл нейтрон, электрически нейтральную частицу, которая уютно расположилась рядом с положительно заряженным протоном внутри атомного ядра. Физики как будто получили все нужные ингредиенты, чтобы сформулировать четкий ответ на вопрос, поставленный в начале главы.

Ответ вышел примерно таким. Все вещество в мире состоит из химических элементов. Химические элементы встречаются в природе в самых разнообразных видах и составляют периодическую таблицу от самого легкого – водорода – до самого тяжелого из известных природных элементов – урана[4].

Все элементы состоят из атомов. Все атомы имеют ядра, состоящие из разного количества положительно заряженных протонов и электрически нейтральных нейтронов. Свойства каждого элемента определяются количеством протонов в ядре его атома. У водорода один протон, у гелия два, у лития три, и так далее вплоть до урана, у которого их девяносто два.

Ядро окружают отрицательно заряженные электроны в количестве соответствующем числу протонов, таким образом, что в итоге атом остается электрически нейтрален. Каждый электрон может иметь ориентацию либо вверх, либо вниз, и каждую орбиталь могут занимать два электрона при условии, что они спаренные.

Ответ очень обстоятельный. Имея элементарные составные части в виде протонов, нейтронов и электронов и принцип Паули, можно объяснить, почему периодическая таблица имеет такую структуру, а не другую. Можно объяснить, почему материя имеет форму и плотность. Можно объяснить существование изотопов – атомов с таким же количеством протонов, но другим количеством нейтронов в ядре. При некотором старании можно объяснить всю химию, биохимию и материаловедение.

В таком объяснении масса не представляет никакой загадки. Массу всего материального вещества можно проследить до составляющих ее протонов и нейтронов, на долю которых приходится около 99 процентов массы любого атома.

Представьте себе кубик льда, замороженной воды тройной дистилляции. Кубик с ребрами длиной 2,7 сантиметра, чуть больше дюйма. Возьмите его в руку. Он холодный и скользкий. Он не тяжелый, но ладонь ощущает его вес. Итак, из чего складывается масса кубика?

Молекулярная масса воды считается по суммарному количеству протонов и нейтронов в ядрах двух атомов водорода и одного атома кислорода, которые составляют молекулу H2O. Ядро каждого атома водорода состоит всего из одного протона, а ядро атома кислорода содержит 8 протонов и 8 нейтронов, что дает в сумме 18 нуклонов. Кубик чистого льда, который вы держите в руке, весит около 18 граммов[5], это масса его молекул в граммах. Таким образом, кубик представляет собой стандартную единицу измерения воды в твердом состоянии, которая называется молем.

Нам известно, что моль вещества содержит установленное количество атомов или молекул, из которых состоит это вещество. Оно называется числом Авогадро, оно чуть больше 600 миллиардов триллионов (6 × 1023). Здесь и содержится ответ. Вес ледяного кубика у вас в ладони – это сумма масс 600 миллиардов триллионов молекул H2O, или примерно 10 800 миллиардов триллионов протонов и нейтронов (см. рис. 3)[6].

Пришлось признать, что атомы не являются неделимыми, как когда-то считали греки. Атомы можно преобразовывать, превращать из одной формы в другую. В 1905 году Эйнштейн использовал специальную теорию относительности, чтобы показать эквивалентность массы и энергии в том, что впоследствии стало самой знаменитой научной формулой Е = mc2: энергия равна произведению массы на квадрат скорости света. При этом мысль, что масса представляет собой хранилище энергии, отнюдь не подорвала ее концепцию, а каким-то образом сделала ее еще более значительной.


Рис. 3

Кубик льда с длиной ребра 2,7 см весит около 18 г (а). Он представляет собой кристаллическую решетку, содержащую чуть больше 600 миллиардов триллионов молекул воды H2O (b). Каждый атом кислорода содержит 8 протонов и 8 нейтронов, а каждый атом водорода содержит 1 протон (c). Кубик льда, таким образом, содержит около 10 800 миллиардов триллионов протонов и нейтронов


Значительной, но не неизменной. Эйнштейн показал, что материя (масса) не сохраняется – она может превращаться в энергию. Когда атом урана-235 расщепляют бомбардировкой нейтронами, около пятой части массы одного протона превращается в энергию в результате ядерной реакции. Если взять 56-килограммовое ядро бомбы из урана-235 90-процентной чистоты, то высвобожденного количества энергии оказалось достаточно, чтобы стереть с лица земли японский город Хиросиму в августе 1945 года.

Но на самом деле Эйнштейна интересовал ответ на более глубокий вопрос. В его статье 1905 года есть намек: «Зависит ли инерция тела от содержания в нем энергии?» Эйнштейн понимал, что формула Е = mc2 фактически означает, что m = Е/с2: вся инертная масса – это всего лишь иная форма энергии[7]. Далекие следствия этого наблюдения станут очевидны только через 60 лет.


В середине 1930-х годов казалось, что строительные кирпичики материи – протоны, нейтроны и электроны – дают исчерпывающий ответ на вопрос, поставленный в начале главы. Но оставалась одна проблема. Еще с конца XIX века было известно, что изотопы некоторых элементов нестабильны. Они радиоактивны: их ядра спонтанно распадаются, запуская цепную ядерную реакцию.

Есть разные виды радиоактивности. Один из них, который Резерфорд назвал бета-радиоактивностью в 1899 году, представляет собой преобразование нейтрона в ядре в протон, что сопровождается излучением высокоскоростного электрона (бета-частицы). Это естественная алхимия: изменение количества протонов в ядре неизбежно меняет его химические свойства[8].

Бета-радиоактивность подразумевает, что нейтрон – нестабильная составная частица и потому совсем не является «фундаментальной». Кроме того, возник вопрос и относительно баланса энергии в этом процессе. Энергией излучаемого электрона нельзя было объяснить всю теоретическую энергию, высвобождаемую превращением протона внутри ядра. В 1930 году Паули решил, что у него нет иного выбора, кроме как предположить, что энергия, которой «не хватает» в реакции, уходит с еще ненаблюдавшейся электрически нейтральной частицей с небольшой массой, которую в конечном итоге назвали нейтрино («нейтрончик»). В то время считалось, что обнаружить такую частицу невозможно, однако впервые она была открыта в 1956 году.

Пора было подвести итог. Одно было ясно. Материя удерживается воедино благодаря силе. Помимо силы притяжения, действующей универсально на все материальные тела, наука пришла к выводу, что есть еще три рода сил, называемых взаимодействиями, которые действуют непосредственно внутри атома.


Рис. 4


Схема взаимодействия двух электронов, как его описывает квантовая электродинамика. Электромагнитная сила отталкивания между двумя отрицательно заряженными электронами подразумевает обмен виртуальным фотоном в точке наибольшего приближения. Фотон назван виртуальным, так как его нельзя наблюдать во время взаимодействия

Взаимодействия между электрически заряженными частицами происходят благодаря электромагнетизму, хорошо известному из трудов физиков-первооткрывателей XIX века, которые, помимо многих других выдающихся достижений, заложили основы электроэнергетики. Полностью релятивистская квантовая теория электромагнитного поля, которая называется квантовой электродинамикой (КЭД), была разработана в 1948 году американскими физиками Ричардом Фейнманом и Джулианом Швингером и японским физиком Синъитиро Томонагой. В КЭД силы притяжения и отталкивания между электрически заряженными частицами переносят так называемые частицы – переносчики взаимодействий.

Например, когда два электрона сближаются друг с другом, они обмениваются частицей, которая заставляет их отталкиваться (см. рис. 4). Переносчики взаимодействия электромагнитного поля – это фотоны, квантовые частицы, из которых состоит всем известный свет. КЭД быстро добилась признания как теория, позволяющая делать беспрецедентно точные предсказания.

Осталось разобраться еще с двумя взаимодействиями. Электромагнетизм не мог объяснить, каким образом протоны и нейтроны связаны внутри атомного ядра, а также как происходит бета-распад. Эти процессы происходят в настолько разных энергетических масштабах, что никакое взаимодействие не способно учесть сразу оба. Ученые признали, что для этого требуются два разных взаимодействия – сильное ядерное, отвечающее за связь между составными частями атомного ядра, и слабое ядерное, управляющее некоторыми ядерными превращениями.

Так мы подходим к периоду в истории физики, о котором и пойдет речь в этой книге. Последующие 60 лет теоретической и экспериментальной физики элементарных частиц привели нас к созданию Стандартной модели – собранию фундаментальных квантовых теорий поля, которые описывают всю материю и все взаимодействия между материальными частицами, за исключением гравитации. Проще всего понять, что такое Стандартная модель и что она значит для понимания материального мира, можно, совершив краткий экскурс в ее историю.

Наше путешествие начинается в 1915 году в Геттингене, тихом университетском городке в Германии.