Читать книгу «Математические модели в естественнонаучном образовании. Том I» онлайн полностью📖 — Дениса Владимировича Соломатина — MyBook.
image

Конкретное разностное уравнение, обсуждаемое в этом разделе, иногда называют экспоненциальной или геометрической моделью, поскольку модель приводит к экспоненциальному росту и ассоциируется с именем Томаса Мальтуса. Математики, однако, склонны сосредотачиваться на форме уравнения  и говорить, что модель линейна. Такая терминология может сбивать с толку, но она важна, когда линейная модель описывает экспоненциальный рост или убывание.

Задачи для самостоятельного решения:

1.1.1. Популяция изначально составляла 100 особей, но из-за комбинированного воздействия рождений и смертей она утраивается каждый час.

а. Составьте таблицу численности популяции для  пробегающего значения от 0 до 5, где  измеряется в часах.

б. Приведите два уравнения, моделирующих рост популяции, сначала путем выражения  через , а затем выразив  через .

в. Что можно сказать об уровнях рождаемости и смертности среди населения вашей страны? Земного шара?

1.1.2. На ранних стадиях развития в развивающихся странах открытие новых школ происходит с достаточно регулярной скоростью. Предположим, что количество школ удваивается примерно каждый месяц.

а. Запишите уравнение, моделирующее эту ситуацию. Уточнив, сколько реального времени представлено шагом 1 в параметре  и каково было начальное количество школ в период новейшей истории.

б. Заполните таблицу и нарисуйте график числа школ в зависимости от .

в. Сопоставьте полученные результаты с официальными данными Росстата. Это соответствует вашей модели? Какие выводы и/или вопросы это вызывает?

1.1.3. С помощью ручного калькулятора составьте таблицу значений численности населения выбирая  в диапазоне от 0 до 6 для следующих моделей. Затем отобразите табличные значения на графике.

а. ,

б. ,

в. ,

1.1.4. Повторите решение задачи 1.1.3(а) с помощью MATLAB, введя последовательность команд, например:

p=1

x=p

p=1.3*p

x=[x p]

p=1.3*p

x=[x p]

Возврат к предыдущим командам для их повторения можно осуществлять нажатием клавиши "↑". Объясните, как это работает. Теперь повторите решение с использованием цикла, например:

p=1

x=1

for i=1:10

p=1.3*p

x=[x p]

end

Отступ не является обязательным, но помогает сделать цикл for-end понятнее для чтения. Объясните, как это работает. Визуализируйте полученные данные на графике с помощью команды:

plot([0:10],x)

1.1.5. Для модели, указанной в задаче 1.1.3 а), сколько времени должно пройти, прежде чем популяция превысит 10, превысит 100 и превысит 1 000? Используйте MATLAB, чтобы вычислить это экспериментальным путём, а затем вычислите аналитически, используя логарифмирование и тот факт, что . Обнаруживается ли закономерность в изменениях вычисленной продолжительности? Объясните, когда и почему значение стабилизируется.

1.1.6. Если бы данные в таблице 1.2 о численности докторов физико-математических наук были собраны по десятилетиям с момента основания института математики, соответствовали бы они геометрической модели? Будет ли численность соответствовать геометрической модели хотя бы в некотором временном интервале? Объясните наблюдаемое явление.

Таблица 1.2. Численность учёных в стране (сотни)


0 1             2             3             4             5             6             7             8             9             10



           1,94       3,04       4,62       6,72       9,26       11,88     14,08     15,52     16,26     16,60     16,72

1.1.7. Заполните пропуски:

а. Модели  и  представляют растущие значения, когда  – любое число в диапазоне _______, а  – любое число в диапазоне _______.

б. Модели  и  представляют уменьшающиеся значения, когда  – любое число в диапазоне _______, а  – любое число в диапазоне _______.

в. Модели  и  представляют стабильные значения, когда  – любое число в диапазоне _______ и когда  – любое число в диапазоне _______.

1.1.8. Объясните, почему модель  не может иметь смысла для описания численности популяции, когда .

1.1.9. Предположим, что популяция описывается моделью  и . Найдите  для .

1.1.10. Говорят, что модель имеет устойчивое состояние или точку равновесия при  если всякий раз, когда , имеем .

а. Перефразируйте определение следующим образом: модель имеет устойчивое состояние при  если всякий раз, когда , имеем  .

б. Перефразируйте определение неформально: модель имеет устойчивое состояние , если ___.

в. Может ли модель, описываемая равенством  иметь устойчивое состояние? Объясните почему.

1.1.11. Объясните, почему модель  приводит к формуле .

1.1.12. Предположим, что на численность определенного населения влияют только рождение, смерть, иммиграция и эмиграция, каждая из которых происходит ежегодно в размере, прямо пропорциональном численности населения. То есть, если население составляет , то в течение периода времени в 1 год число рождений составляет , число смертей , число иммигрантов равно , а число эмигрантов равно , для некоторых , ,  и . Покажите, что популяция все еще может быть смоделирована равенством  и выведите формулу для вычисления .

1.1.13. Как хорошо известно лимнологам и океанографам, количество солнечного света, проникающего на различные глубины воды, может сильно повлиять на численность живущих там организмов. Предположим, что вода имеет равномерную мутность, а количество обитателей на каждом метре в глубину пропорционально количеству поступающего света.

а. Объясните, почему это приводит к модели вида , где  обозначает количество света, проникшего на глубину  метров.

б. В каком диапазоне должны находиться параметры этой модели, чтобы иметь физический смысл?

в. При  и  постройте график  для .

г. Применима ли аналогичная модель к фильтрации света через полог леса? Применимо ли там предположение о «равномерной мутности»?

1.1.14. В таблице 1.3 приведены данные о численности обучающихся физмат школ.

а. Изобразите данные на графике. Соответствуют ли эти данные геометрической модели роста? Объясните почему да или почему нет, используя графические и численные методы оценки. Можете ли придумать факторы, которые приведут к отклонению от геометрической модели?

б. Используя данные только за 1980 и 1985 годы для оценки скорости роста геометрической модели, посмотрите, насколько хорошо результаты модели согласуются с данными последующих лет.

в. Вместо того, чтобы просто использовать данные 1980 и 1985 годов для оценки показателя роста числа школьников, найдите способ использовать все данные, чтобы получить то, что (предположительно) должно быть лучшей геометрической моделью. Проявите творчество. Есть несколько разумных подходов. Соответствует ли ваша новая модель данным лучше, чем модель из части (б)?

Таблица 1.3. Оценки числа школьников

Год        Численность школьников (в 1 000 человек)

1980                     213,260

1985                     231,658

1990                     245,976

1995                     254,504

2000                     263,368

2005                     263,952

2010                     302,690

2015                     328,602

2020                     359,980

1.1.15. Предположим, что популяция моделируется уравнением , где  измеряется в единицах. Если решим измерить численность популяции в тысячах единиц, обозначив это число за , то уравнение, моделирующее популяцию, могло измениться. Объясните, почему модель по-прежнему будет простой . Подсказка: обратите внимание на то, что .

1.1.16. В данной задаче исследуем, как изменится модель, если изменить количество времени, представленное приращением переменной  на единицу. Важно отметить, что эта ситуация не всегда имеет биологический смысл. Например, для организмов, таких как многие насекомые, поколения не перекрываются. Дрозофилы не воспитывают себе преемников. Но время их размножения имеет регулярное распределение, поэтому использование приращения времени меньшее, чем промежуток между двумя последовательными временами рождения, было бы бессмысленным. Однако для более сложных организмов, таких как люди, с перекрывающимися поколениями и практически непрерывным размножением, нет естественного ограничения на выбор значения приращения времени. Таким образом, популяции иногда моделируются с «бесконечно малым» приращением времени (т.е. дифференциальными уравнениями, а не разностными). Эта ситуация иллюстрирует связь между двумя типами моделей: дискретная и континуальная.

Пусть популяция моделируется уравнением , , где каждое приращение  на 1 представляет собой прохождение 1 года.

а. Предположим, что захотели создать новую модель для этой популяции, где каждое приращение  на 1 представляет 0.5 лет, а численность популяции теперь обозначается . При этом хотим, чтобы новая модель описывала те же популяции, что и первая модель, с интервалом в 1 год (таким образом, ). Следовательно, составляется таблица 1.4. Заполните строку  в таблице так, чтобы рост был все еще геометрическим. Затем предложите уравнение модели, выражающее  через .

Таблица 1.4. Изменение временных шагов в модели



0 1                            2                            3



          A                           2А                         4А                         8А



             0             1             2             3             4             5             6



           A                           2А                         4А                         8А

б. Задайте новую модель, которая описывает  с интервалом в 1 год, обозначив размер популяции за , в которой приращение  на 1 представляло бы 0.1 года (то есть ). Предлагается начать решение с создания таблицы, аналогичной таблице из части (a).

в. Предложите модель, которая согласуется с  на интервале в 1 год, но описывает численность популяции , где приращение t на 1 представляет собой h лет (таким образом, ).  Очевидно, что  может быть больше или меньше 1; та же формула опишет любую ситуацию.

г. Обобщите части (а–в). Объясните, почему, если исходная модель использует приращение времени 1 год и задается уравнением , то модель, описывающая те же популяции с интервалом в 1 год, но использующая приращение времени  лет, будет задана уравнением .

д. Если теперь изменить обозначение временного интервала с  на , то пункт (г) показывает, что . Если  считать бесконечно малым, то получим . Проиллюстрировать тот факт, что  можно выбрав несколько значений  при малом  и сравнив значения  с  . Этот результат легко доказать формально:



.

д. Докажите, что решением уравнения  при начальном условии  является .

Как это согласуется с формулой для выражения  через  и  в модели разностного уравнения ? Специалисты часто называют  в каждой из выведенных выше формул «конечной скоростью роста», в то время как  называется «собственной скоростью роста».