Читать книгу «Математические модели в естественнонаучном образовании. Том I» онлайн полностью📖 — Дениса Владимировича Соломатина — MyBook.
image

Глава 1. Динамическое моделирование разностными уравнениями

Независимо от того, исследуем ли мы рост числа выпускников математических специальностей, взаимодействие с работодателями, эволюцию рабочих программ классических курсов, передачу фундаментальных идей или распространение фейков, дидактические системы характеризуются изменениями и адаптацией. Даже когда они кажутся постоянными и стабильными, это часто является результатом баланса тенденций, толкающих системы в разных направлениях. Большое количество взаимодействий и конкурирующих тенденций может затруднить просмотр полной картины сразу.

Как мы можем понять такие сложные системы, как те, которые возникают в социальных науках? Как мы можем проверить, достаточно ли нашего предполагаемого понимания ключевых процессов, чтобы описать, как ведет себя система? Математический язык предназначен для точного описания, и поэтому описание сложных систем часто требует математической модели.

В этой главе мы рассмотрим некоторые способы, которыми математика используется для моделирования динамических процессов в обучении математике. Простые формулы связывают, например, количество абитуриентов в определенном году с выпускниками последующих лет. Мы учимся понимать последствия, которые можно прогнозировать, составляя уравнение, средствами математического анализа, при этом наша формализация может быть проверена эмпирическими наблюдениями. Хотя многие из моделей, которые мы рассматриваем, могут на первый взгляд показаться грубыми упрощениями, их сила в простоте. Чем проще модель, тем яснее становятся предсказываемые её последствия исходя из самых базовых предположений.

Начнем с того, что сосредоточимся на моделировании того, как количество выпускников физико-математических классов растёт или сокращается с течением времени. Поскольку математические модели должны основываться на вопросах, вот несколько вопросов, которые следует учитывать: почему число выпускников иногда растёт, а иногда сокращается? Должны ли объемы выпусков вырасти до такой степени, что они станут неустойчиво большими, а затем сойдут до нуля? Если нет, то должно ли количество выпускников достичь некоторого равновесия? Если равновесие существует, какие факторы ответственны за него? Является ли такое равновесие настолько тонким, что любое нарушение может положить ему конец? Что определяет, следует ли данная тенденция одному из этих курсов или другому?

Начнём разбирать перечисленные вопросы с помощью самой простой математической модели изменяющейся численности населения.

1.1. Мальтузианская модель

Предположим, мы выращиваем не будущих математиков, а популяцию какого-то организма, скажем, мух, в лаборатории. Представляется разумным, что в любой данный день численность населения будет меняться из-за новых рождений, так что оно увеличивается за счет добавления определенной доли f от имеющегося населения. При этом часть d от имеющегося населения погибнет, условно, как бы цинично это не звучало, но многие профессиональные математики после выпуска вынуждены работать не по специальности, что смерти подобно.

Рассмотрим простейшую прикладную модель, которую предложил Томас Мальтус в своём очерке 1798 года о принципе народонаселения, неоднократно подвергавшемся всесторонней критике. Если люди живут в течение 70 лет, то мы ожидаем, что из большой популяции примерно 1/70 населения будет умирать каждый год; таким образом, . Если, с другой стороны, мы предположим, что на каждые сто человек приходится около четырех рождений в год, мы имеем . Обратите внимание, что в этом случае мы выбрали год в качестве единиц времени.

Вопросы для самопроверки:

– Объясните, почему для любой популяции  должно быть в диапазоне от 0 до 1.  Что будет означать ?  Что будет означать ?

– Объясните, почему  должно быть не менее 0, но может быть больше 1. Можете ли вы назвать реальные популяции (при должном выборе единицы времени), для которых  будет больше 1?

– Используя годы в качестве единицы времени, какие значения f и d будут уместны для моделирования числа выпускников естественно-научного профиля? Гуманитарного? Социально-экономического? Технологического и универсального?

Чтобы смоделировать значения P сфокусируемся на следующем за P изменении численности. Формально . Это означает, что, учитывая текущее значение , скажем, , а также  и , например,  и , можно предсказать изменение . Таким образом, в начале следующего временного периода суммарная численность составляет .

Введём несколько вспомогательных обозначений для упрощения восприятия математической модели. Пусть  – размер популяции, измеренный в момент времени , тогда  это приращение или изменение численности между последовательными моментами времени.

Ясно, что  зависит от , поэтому можно встретить подстрочный индекс  рядом с , так как для разных значений  приращение  оказывается разным. Тем не менее, этот индекс не редко пропускают.

Теперь то, что нас в конечном итоге волнует, это понимание динамики популяции , а не только приращения . Но . Объединив константы вместе, обозначив за , модель стала гораздо проще: .

Популяризаторы науки часто называют константу  конечной скоростью роста населения. (Слово «конечный» используется, чтобы отличить это число от любого вида мгновенной скорости, которая включала бы производную, как вы знаете из курса дифференциального исчисления. Для значений , , и  использованных ранее, вся модель теперь имеет вид , где . Первое уравнение, выражающее  через , называется разностным уравнением, а второе, задающее , является его начальным условием.  С этими двумя уравнениями легко составить таблицу значений численности  с течением времени, как в таблице 1.1.

Таблица 1.1. Рост популяции по простой модели

Момент времени         Численность

0                                          500

1                                          (1. 07)500 = 535

2                                          (1. 07)2500 = 572.45

3                                          (1. 07)3500 ≈ 612.52

…                                         …

По закономерностям в таблице 1.1 легко перейти от рекуррентного соотношения для  к замкнутой форме записи, чтобы осталась только зависимость от  в явном виде: . На этой модели теперь легко предсказать численность популяции в любое время.

Может показаться странным называть  разностным уравнением, когда разность  там не появляется. Однако уравнения  и  эквивалентны, поэтому любое из них разумно определять одним и тем же термином.

Пример. Предположим, что система математического образования имеет очень жесткие ограничения на целевые цифры приёма в ВУЗы (что вполне реалистично на просторах СНГ), по которым каждый год выпускается 200 молодых специалистов и все сотрудники пенсионного возраста уходят на заслуженный отдых. После того, как состоялся очередной выпуск, только 3% остаются работать по специальности, чтобы связать свою профессиональную деятельность с математикой, остальные либо эмигрируют, либо находят выше оплачиваемую работу. Чтобы написать разностное уравнение в этой системе, где будем измерять  в поколениях, нужно просто заметить, что уровень «смертности» равен , в то время как эффективная «плодовитость» системы равна . Следовательно, .

Вопросы для самопроверки:

– Будет ли общая численность математиков расти, а не уменьшаться при таких условиях?

– Предположим, вы не знаете эффективной «плодовитости», но знаете, что численность  стабильна (неизменна) с течением времени. Какой должна быть ? (Подсказка: поймите, что такое , если численность стабильна?) Если каждый год выпускается 200 молодых специалистов, какая их часть должна оставаться в системе и обучать математиков следующего поколения?

Обратите внимание, что в этой последней модели мы игнорировали тех математиков, кто не участвует в обучении математиков следующего поколения. Это на самом деле довольно распространенный подход и упрощает модель. Однако это означает, что делаются дополнительные предположения. Для конкретного направления точное количество учителей может мало влиять на то, как растет численность специалистов. Возможно, учителя всегда встречаются примерно в равном количестве с узкими специалистами, так что мы знаем, что общая численность людей, посвятивших жизнь математике, просто вдвое превышает число учителей математики. С другой стороны, численность профессиональных математиков может вести себя иначе, чем численность учителей математики, но независимо от того, мало ли учителей или их много, всегда достаточно, чтобы появление учителей происходило непрестанно. Таким образом, именно численность учителей математики является важным параметром для отслеживания, чтобы понять долгосрочный рост или сокращение числа профессиональных математиков в стране.

Вопросы для самопроверки:

– Можете ли вы представить себе обстоятельства, при которых игнорирование уменьшения числа профессионалов той или оной области было бы хорошей идеей?

Так что же такое разностное уравнение? Теперь, когда увидели разностное уравнение на примере, можно попытаться дать строгое определение: разностное уравнение – это формула, выражающая значения некоторой величины  в терминах предыдущих значений . Таким образом, если  является какой-либо функцией, то  называется разностным уравнением. В предыдущем примере использовалась , но часто  будет более сложным.

Изучая разностные уравнения и их приложения, рассмотрим два основных вопроса: 1) Как найти подходящее разностное уравнение для моделирования ситуации? 2) Как понять поведение модели разностных уравнений после того, как её нашли?

Обе эти задачи бывают довольно трудны. Тем не менее, обязательно научитесь моделировать с помощью разностных уравнений, глядя на математические модели, используемые разными авторами в классической литературе, а затем создадите собственные модели. Однако, честно говоря, это не обязательно исключит столкновение с принципиально неразрешимой проблемой. Что касается понимания поведения, которое моделируется разностным уравнением, то обычно не представляется возможным найти явную формулу, как было сделано выше для , описывающего численность популяции в мальтузианской модели. Вместо этого разрабатываются методы извлечения менее точной, но качественной, а не количественной информации из модели.














...
6