Читать книгу «Теорема века. Мир с точки зрения математики» онлайн полностью📖 — Анри Пуанкаре — MyBook.
image

Стюарт Милль утверждал, что всякое определение содержит аксиому, так как, определяя, скрыто утверждают существование определяемого предмета. Это значило бы заходить слишком далеко; редко бывает, чтобы математики давали определение, не доказав существования определяемого объекта; если же они избавляют себя от этого труда, то обыкновенно в тех случаях, когда читатель сам легко может сделать соответствующее дополнение. Но не следует забывать, что слово «существование» имеет различный смысл тогда, когда речь идет о математическом объекте, и тогда, когда вопрос касается материального предмета. Математический объект существует, если его определение не заключает противоречия ни в самом себе, ни с предложениями, допущенными раньше.

Но если замечание Стюарта Милля не может быть приложено ко всем определениям, оно тем не менее остается справедливым для некоторых из них. Например, плоскость иногда определяют так: плоскость есть поверхность такого рода, что прямая, соединяющая две любые точки ее, укладывается целиком на этой поверхности.

Это определение, очевидно, скрывает в себе новую аксиому; правда, можно было бы его изменить, и это было бы лучше, но тогда надо было явно указать эту аксиому.

Другие определения могут дать повод к размышлениям, не менее важным.

Таково, например, определение равенства двух фигур: две фигуры равны, когда их можно наложить одну на другую. Чтобы сделать это, надо одну из них перемещать до тех пор, пока она не совпадет с другой; но как надо ее перемещать? Если мы зададим этот вопрос, то, без сомнения, нам ответят, что надо сделать это, не деформируя ее, – как если бы дело шло о неизменяемом твердом теле. Но тогда порочный круг будет очевиден.

Фактически это определение ничего не определяет; оно не имело бы никакого смысла для существа, обитающего в мире, где имеются только жидкости. Если оно кажется нам ясным, то просто потому, что мы привыкли к свойствам реальных твердых тел, которые не отличаются значительно от свойств идеальных твердых тел, сохраняющих все свои размеры неизменными.

Между тем, как ни несовершенно это определение, оно скрывает в себе некоторую аксиому.

Возможность движения неизменной фигуры не есть истина, очевидная сама по себе; порядок очевидности ее во всяком случае не превышает порядка очевидности постулата Евклида и несравним с порядком очевидности аналитических априорных суждений.

Впрочем, изучая геометрические определения и доказательства, мы видим, что приходится допустить без доказательства не только возможность этого движения, но и еще некоторые из его свойств. И прежде всего – то, которое вытекает из определения прямой линии. Ей дано много несовершенных определений, но истинным является следующее, подразумеваемое во всех доказательствах, где используется прямая линия:

«Может случиться, что движение неизменной фигуры будет таково, что все точки некоторой линии, принадлежащей этой фигуре, остаются неподвижными, между тем как все точки, расположенные вне этой линии, движутся. Подобная линия будет называться прямой». В этой формулировке мы намеренно отделили определение от аксиомы, которую оно скрывает в себе.

Многие из доказательств – как, например, доказательства равенства треугольников, доказательство возможности опустить перпендикуляр из точки на прямую – предполагают предложения, которые прямо не указываются, так как они требуют допущения возможности переносить фигуру в пространстве определенным образом.

Четвертая геометрия. Среди этих скрытых аксиом, мне кажется, есть одна, которая заслуживает некоторого внимания, так как, опуская ее, можно построить четвертую геометрию, столь же свободную от внутренних противоречий, как и геометрии Евклида, Лобачевского и Римана.

Чтобы доказать, что всегда можно восставить из точки А перпендикуляр к прямой АВ, рассматривают прямую АС, вращающуюся около точки А и сначала сливающуюся с неподвижной прямой АВ; ее поворачивают около А до тех пор, пока она не образует продолжения АВ.

Таким образом допускаются два предположения: во-первых, что подобное вращение возможно и, во-вторых, что можно продолжать его до тех пор, пока две прямые не составят продолжение одна другой. Если мы допустим первое и откинем второе, то придем к ряду теорем, еще более странных, чем теоремы Лобачевского и Римана, но в такой же степени свободных от противоречия.

Я приведу только одну из этих теорем, и притом не из самых странных: действительная прямая может быть перпендикулярна сама к себе.

Теорема Ли. Число аксиом, скрытым образом введенных в классические доказательства, больше, чем это необходимо. Было бы интересно свести это число к минимуму. Можно спросить себя сначала, осуществимо ли это желание – не беспредельно ли и число необходимых аксиом, и число воображаемых геометрий. В этого рода исследованиях первое место занимает теорема Софуса Ли. Ее можно выразить так:

Предположим, что допускаются следующие положения:

1. Пространство имеет n измерений.

2. Движение неизменяемой фигуры возможно.

3. Необходимо p условий, чтобы определить положение этой фигуры в пространстве.

Число геометрий, совместимых с этими положениями, будет ограниченное.

Я могу даже прибавить, что если n дано, то для p можно указать высший предел.

Следовательно, если допустить возможность движения неизменяемой фигуры, то можно будет придумать лишь конечное число (и даже довольно ограниченное) геометрических систем трех измерений.

Геометрии Римана. Между тем этот результат, по-видимому, находится в противоречии с заключениями Римана, так как этот ученый построил бесчисленное множество различных геометрий (та, которой обыкновенно дают его имя, есть не более чем частный случай).

Все зависит, говорит Риман, от способа, которым определяют длину кривой. Но существует бесконечное множество способов определять эту длину, и каждый из них может сделаться точкой отправления новой геометрии. Это совершенно верно; но большинство этих определений несовместимо с движением неизменяемой фигуры, которое предполагается возможным в теореме Ли. Эти геометрии Римана, столь интересные с различных точек зрения, могут быть лишь чисто аналитическими, и они не поддаются доказательствам, которые были бы аналогичны евклидовым.

Геометрии Гильберта. Наконец, Веронезе и Гильберт придумали новые, еще более странные геометрии, которые они назвали неархимедовыми. Они построили их, устранив аксиому Архимеда, в силу которой любая данная протяженность, умноженная на целое достаточно большое число, в конечном счете превзойдет любую данную протяженность, сколь бы велика она ни была. На неархимедовой прямой существуют все точки нашей обычной геометрии, но имеются множества других, которые вставляются между ними, так что между двумя отрезками, которые геометры старой школы рассматривали как смежные, оказывается возможным поместить множество новых точек. Одним словом, неархимедовы пространства уже не являются более непрерывностью второго порядка, если применять язык предыдущей главы, они суть непрерывность третьего порядка.

О природе аксиом. Большинство математиков смотрят на геометрию Лобачевского как на простой логический курьез; но некоторые из них идут дальше. Раз возможно несколько геометрий, то достоверно ли, что наша геометрия есть истинная? Без сомнения, опыт учит нас, что сумма углов треугольника равна двум прямым; но это потому, что мы оперируем треугольниками слишком малыми; разность, по Лобачевскому, пропорциональна площади треугольника; не может ли она сделаться заметной, когда мы будем оперировать большими треугольниками или когда наши измерения сделаются более точными? Таким образом, евклидова геометрия была бы только временной геометрией.

Чтобы обсудить это мнение, мы должны сначала спросить себя, в чем состоит природа геометрических аксиом. Не являются ли они синтетическими априорными суждениями, как говорил Кант?

Будь это так, они навязывались бы нам с такой силой, что мы не могли бы ни вообразить себе положение противоположного содержания, ни основать на нем теоретическое построение. Неевклидовых геометрий не могло бы быть.

Чтобы убедиться в этом, возьмем настоящее синтетическое априорное суждение, например то, которое, как мы видели в первой главе, играет первенствующую роль: если теорема верна для числа 1 и если доказано, что раз она справедлива для n, то она верна и для n + 1; в таком случае она будет справедлива для всех положительных целых чисел.

Попытаемся затем отвлечься от этого положения и, откинув его, построить ложную арифметику по аналогии с неевклидовой геометрией. Это нам не удастся. Сначала было даже стремление рассматривать эти суждения как аналитические.

С другой стороны, обратимся снова к нашим воображаемым существам без толщины; могли ли бы мы допустить, чтобы эти существа, если бы их ум был устроен по образу нашего, приняли евклидову геометрию, которая противоречила бы всему их опыту?

Итак, не должны ли мы заключить, что аксиомы геометрии суть истины экспериментальные? Но над идеальными прямыми или окружностями не экспериментируют; это можно делать только над материальными объектами. К чему же относятся опыты, которые служили бы основанием геометрии?

Ответ ясен. Выше мы видели, что рассуждения ведутся постоянно так, как если бы геометрические фигуры были подобны твердым телам. Следовательно, вот что заимствовала геометрия у опыта: свойства твердых тел.

Свойства света и его прямолинейное распространение также были поводом, из которого вытекли некоторые предложения геометрии, в частности предложения проективной геометрии; так что с этой точки зрения можно было бы сказать, что метрическая геометрия есть изучение твердых тел, а проективная геометрия – изучение света.

Но трудность остается в силе, и она непреодолима. Если бы геометрия была опытной наукой, она не была бы наукой точной и должна была бы подвергаться постоянному пересмотру. Даже более, она немедленно была бы уличена в ошибке, так как мы знаем, что не существует твердого тела абсолютно неизменного.

Итак, геометрические аксиомы не являются ни синтетическими априорными суждениями, ни опытными фактами. Они суть условные положения (соглашения): при выборе между всеми возможными соглашениями мы руководствуемся опытными фактами, но самый выбор остается свободным и ограничен лишь необходимостью избегать всякого противоречия. Поэтому-то постулаты могут оставаться строго верными, даже когда опытные законы, которые определяли их выбор, оказываются лишь приближенными.

Другими словами, аксиомы геометрии (я не говорю об аксиомах арифметики) суть не более чем замаскированные определения.

Если теперь мы обратимся к вопросу, является ли евклидова геометрия истинной, то найдем, что он не имеет смысла. Это было бы все равно что спрашивать, какая система истинна – метрическая или же система со старинными мерами, или какие координаты вернее – декартовы или же полярные. Никакая геометрия не может быть более истинна, чем другая; та или иная геометрия может быть только более удобной. И вот, евклидова геометрия есть и всегда будет наиболее удобной по следующим причинам:

1. Она проще всех других; притом она является таковой не только вследствие наших умственных привычек, не вследствие какой-то, я не знаю, непосредственной интуиции, которая нам свойственна по отношению к евклидову пространству; она наиболее проста и сама по себе, подобно тому как многочлен первой степени проще многочлена второй степени; формулы сферической тригонометрии сложнее формул прямолинейной тригонометрии, и они показались бы еще более сложными для аналитика, который не был бы знаком с геометрическими обозначениями.

2. Она в достаточной степени согласуется со свойствами реальных твердых тел, к которым приближаются части нашего организма и наш глаз и на свойстве которых мы строим наши измерительные приборы.

1
...
...
17