Читать книгу «Теорема века. Мир с точки зрения математики» онлайн полностью📖 — Анри Пуанкаре — MyBook.

Часть II. Пространство

Глава III. Неевклидовы геометрические системы

Всякое заключение предполагает наличие посылок; посылки же эти или сами по себе очевидны и не нуждаются в доказательстве, или могут быть установлены, только опираясь на другие предположения. Но так как этот процесс не может продолжаться беспредельно, то всякая дедуктивная наука, и в частности геометрия, должна основываться на некотором числе недоказуемых аксиом. Поэтому все руководства по геометрии прежде всего излагают эти аксиомы. Но между этими аксиомами приходится делать различие; некоторые их них, как, например, аксиома: «две величины, равные одной и той же третьей, равны между собой», суть предложения не геометрии, а анализа. Я рассматриваю их как аналитические априорные суждения и не буду заниматься ими. Но я должен остановиться на других аксиомах, которые относятся к геометрии. Большинство руководств излагают три такие аксиомы:

1. Между двумя точками можно провести лишь одну прямую.

2. Прямая есть кратчайшее расстояние между двумя точками.

3. Через данную точку можно провести лишь одну прямую, параллельную данной.

Хотя вообще и обходятся без доказательства второй из этих аксиом, но было бы возможно вывести ее из двух остальных и из тех гораздо более многочисленных аксиом, которые допускаются скрыто, как я выясню это далее.

Долгое время тщательно искали доказательства третьей аксиомы, известной под названием постулата Евклида. Сколько было потрачено сил в этой химерической надежде, положительно не поддается описанию. Наконец, в начале прошлого столетия и почти одновременно двое ученых, русский – Лобачевский и венгерский – Бояи, установили неопровержимо, что это доказательство невозможно; этим они почти совсем избавили нас от изобретателей геометрии без постулата Евклида; с тех пор парижская Академия наук получает не более одного-двух новых доказательств в год. Но вопрос не был исчерпан; его разработка не замедлила сделать новый большой шаг с опубликованием знаменитого мемуара Римана «Ober die Нуроthesen, welche der Geometrie zum Grunde liegen»[4]. Эта маленькая работа вызвала к жизни большинство новых работ, о которых я буду говорить дальше и среди которых следует назвать работы Бельтрами и Гельмгольца.

Геометрия Лобачевского. Если бы возможно было вывести постулат Евклида из других аксиом, то, отбрасывая этот постулат и допуская другие аксиомы, мы, очевидно, должны были бы прийти к следствию, заключающему в себе противоречие; поэтому было бы невозможно на таких положениях построить цельную геометрическую систему.

Но как раз это и сделал Лобачевский. Он допускает сначала, что через точку можно провести несколько прямых, параллельных данной прямой.

Кроме этой, все другие аксиомы Евклида он сохраняет. Из этих гипотез он выводит ряд теорем, между которыми нельзя указать никакого противоречия, и строит геометрию, непогрешимая логика которой ни в чем не уступает евклидовой геометрии. Теоремы, конечно, весьма отличаются от тех, к которым мы привыкли, и вначале кажутся несколько странными.

Так, сумма углов треугольника всегда меньше двух прямых углов; разность между этой суммой и двумя прямыми углами пропорциональна площади треугольника.

Невозможно построить фигуру, подобную данной, но имеющую иные размеры.

Если разделить окружность на n равных частей и провести в точках деления касательные, то эти n касательных образуют многоугольник, если радиус окружности достаточно мал; но если этот радиус достаточно велик, они не встретятся.

Бесполезно было бы увеличивать число этих примеров; теоремы Лобачевского не имеют никакого отношения к евклидовым, но тем не менее они логически связаны между собой.

Геометрия Римана. Вообразим себе мир, заселенный исключительно существами, лишенными толщины, и предположим, что эти «бесконечно плоские» существа расположены все в одной плоскости и не могут из нее выйти. Допустим далее, что этот мир достаточно удален от других миров, чтобы не подвергаться их влиянию. Раз мы начали делать такие допущения, ничто не мешает нам наделить эти существа способностью мышления и считать их способными создать геометрию. В таком случае они, конечно, припишут пространству только два измерения.

Но предположим теперь, что эти воображаемые существа, оставаясь все еще лишенными толщины, имеют форму поверхности шара, а не форму плоскости, и расположены все на одной и той же сфере, с которой не могут сойти. Какую геометрию они могут построить? Прежде всего, ясно, что они припишут пространству только два измерения; роль прямой линии для них будет играть кратчайшее расстояние от одной точки до другой на сфере, т. е. дуга большого круга; одним словом, их геометрия будет геометрией сферической.

То, что они назовут пространством, будет эта сфера, с которой они не могут сойти и на которой происходят все явления, доступные их познанию. Их пространство будет безгранично, так как по сфере всегда можно безостановочно идти вперед, и тем не менее оно будет конечно, никогда нельзя дойти до края, но можно совершить кругообразное движение.

Геометрия Римана есть не что иное, как сферическая геометрия, распространенная на три измерения. Чтобы построить ее, немецкий математик должен был отбросить не только постулат Евклида, но, кроме того, еще и первую аксиому: через две точки можно провести только одну прямую.

На сфере через две данные точки можно провести вообще один большой круг (который, как мы сейчас видели, играл бы роль прямой для наших воображаемых существ); но есть одно исключение: если две данные точки диаметрально противоположны, то через них можно провести бесконечное множество больших кругов. Так и в геометрии Римана (по крайней мере в одной из ее форм) через две точки вообще можно провести только одну прямую; но есть исключительные случаи, когда через две точки можно провести бесконечное количество прямых.

Между геометриями Римана и Лобачевского существует в некотором смысле противоположность.

Так, сумма углов треугольника:

– равна двум прямым в геометрии Евклида;

– меньше двух прямых в геометрии Лобачевского;

– больше двух прямых в геометрии Римана.

Число линий, которые можно провести через данную точку параллельно данной прямой:

– равно единице в геометрии Евклида;

– нулю в геометрии Римана;

– бесконечности в геометрии Лобачевского.

Прибавим, что пространство Римана конечно, хота и безгранично, в указанном выше смысле этих двух слов.

Поверхности с постоянной кривизной. Остается возможным одно возражение. Действительно, теоремы Лобачевского и Римана не содержат никакого противоречия; но как бы ни были многочисленны следствия, которые вывели из своих допущений эти два геометра, все же последние должны были остановиться, не исчерпав всех возможных выводов, потому что число их бесконечно. Но тогда кто поручится, что если бы они продолжали свои выводы далее, то все же не пришли бы к противоречию?

Это затруднение не существует для геометрии Римана, если ограничиваться двумя измерениями; в самом деле, геометрия Римана для двух измерений не отличается, как мы видели, от сферической геометрии, которая есть только ветвь обыкновенной геометрии и которая, следовательно, стоит вне всякой дискуссии.

Бельтрами, сведя также и геометрию Лобачевского для двух измерений к тому, что она стала только ветвью обыкновенной геометрии, опроверг таким же образом направленное против нее возражение. Вот как он пришел к этому. Рассмотрим на некоторой поверхности произвольную фигуру. Представим себе, что эта фигура начерчена на гибком и нерастяжимом полотне, наложенном на эту поверхность, так что, когда полотно перемещается и деформируется, различные линии этой фигуры могут изменять форму, не меняя длины. Вообще, эта гибкая и нерастяжимая фигура не может перемещаться, не оставляя поверхности; но есть некоторые особые поверхности, для которых подобное движение было бы возможно: это поверхности с постоянной кривизной.

Возвратимся к сравнению, которое мы сделали выше, и вообразим себе существа без толщины, живущие на одной из таких поверхностей. Движение фигуры, все линии которой сохраняют постоянную длину, с их точки зрения будет возможно. Подобное движение, наоборот, казалось бы абсурдным для существ без толщины, живущих на поверхности с переменной кривизной.

Поверхности с постоянной кривизной бывают двух родов. Одни из них – поверхности с положительной кривизной; они могут быть деформированы так, что накладываются на сферу. Следовательно, геометрия этих поверхностей сводится к сферической геометрии, которая есть геометрия Римана. Другие – поверхности с отрицательной кривизной. Бельтрами показал, что геометрия этих поверхностей есть не что иное, как геометрия Лобачевского. Таким образом, геометрии двух измерений, как Римана, так и Лобачевского, оказываются связанными с евклидовой геометрией.

Истолкование неевклидовых геометрических систем. Таким образом, устраняется возражение, касающееся геометрических систем двух измерений.

Легко было бы распространить рассуждение Бельтрами на геометрии трех измерений. Умы, не отрицающие пространства четырех измерений, не увидят в этом никакой трудности, но таковых немного. Поэтому я предпочитаю поступить иначе.

Возьмем некоторую плоскость, которую я буду называть основной, и построим нечто вроде словаря, установив соответствие в двойном ряду членов, написанных в двух столбцах, таким же образом, как в обычных словарях соответствуют друг другу слова двух языков, имеющие одинаковое значение.


И т. д.

Возьмем затем теоремы Лобачевского и переведем их с помощью этого словаря, как мы переводим немецкий текст с помощью немецко-французского словаря. Мы получим таким образом теоремы обыкновенной геометрии.

Например, теорема Лобачевского: «сумма углов треугольника меньше двух прямых» переводится так: «если криволинейный треугольник имеет сторонами дуги кругов, которые при продолжении пересекают основную плоскость ортогонально, то сумма углов этого криволинейного треугольника будет меньше двух прямых». Таким образом, как бы далеко мы ни развивали следствия из допущений Лобачевского, мы никогда не натолкнемся на противоречие. В самом деле, если бы две теоремы Лобачевского находились в противоречии, то то же самое имело бы место и для переводов этих двух теорем, сделанных при помощи нашего словаря; но эти переводы суть теоремы обыкновенной геометрии, а никто не сомневается, что обыкновенная геометрия свободна от противоречий. Однако откуда происходит в нас эта уверенность и справедлива ли она? Это – вопрос, который я не буду разбирать здесь, так как он потребовал бы подробного развития. Во всяком случае, указанное выше возражение отпадает полностью.

Это еще не все. Геометрия Лобачевского, допускающая таким образом конкретное истолкование, перестает быть пустым логическим упражнением и может получить применение; я не имею времени говорить здесь ни об ее приложениях, ни о той пользе, которую Клейн и я извлекли из нее для интегрирования линейных уравнений.

Указанное истолкование, впрочем, не единственное. Можно было бы установить несколько словарей, аналогичных предыдущему, и все они позволяли бы простым «переводом» преобразовывать теоремы Лобачевского в теоремы обыкновенной геометрии.

Скрытые аксиомы. Являются ли аксиомы, явно формулируемые в руководствах, единственными основаниями геометрии? Мы можем убедиться в противном, замечая, что даже если одну за другой отвергнуть эти аксиомы, все-таки еще останутся нетронутыми некоторые предложения, общие теориям Евклида, Лобачевского и Римана. Эти предложения должны опираться на некоторые предпосылки, которые геометры допускают в скрытой форме. Интересно попытаться выделить их из классических доказательств.

1
...
...
17