Читать книгу «Основы физиологии сердца» онлайн полностью📖 — Андрея Пуговкина — MyBook.

1.4. Ионные механизмы возникновения мембранных потенциалов кардиомиоцитов и автоматии клеток – водителей ритма

Фундаментальные исследования механизмов электрической активности миокарда были выполнены в 1950–1960-е гг. в лабораториях Б. Гоффмана и П. Крейнфилда наряду с экспериментами А. Ходжкина и Б. Катца по изучению общих электрофизиологических свойств нервной ткани. Эти исследования позволили установить, что кардинальные свойства миокарда: возбудимость – способность отвечать на действие раздражителей возбуждением в виде электрических импульсов; проводимость – способность проводить возбуждение от клетки к клетке без затухания; автоматия (автоматизм) – способность генерировать электрические импульсы в отсутствие внешних раздражителей, – обеспечиваются трансмембранными ионными токами, движущимися как внутрь клетки (входящие токи), так и из нее (выходящие токи); рефрактерность – неспособность к тетаническому сокращению, которая обеспечивает периодичность фаз сердечного цикла и пульсирующий характер кровотока.

Активный транспорт ионов (движение против градиента концентраций) осуществляется ионными насосами, которые сопряжены с мембранными ферментами, ускоряющими гидролиз аденозинтрифосфорной кислоты (АТФ), – АТФ-азами. Выделяющаяся в результате энергия АТФ расходуется на перенос ионов. Наиболее значимая роль в процессах активного транспорта на наружной мембране (сарколемме) кардиомиоцитов, как и в мембранах клеток других возбудимых тканей, принадлежит К+/Nа+-насосу, который переносит ионы К+ внутрь клетки, а Nа+ – из нее. При работе этого насоса происходит неэквивалентный (электрогенный) обмен ионов: на каждые 2 иона К+, перенесенных в клетку, выводится 3 иона Na+. Однако в кардиомиоцитах, в отличие от нейронов, клеток гладких и скелетных мышц, осуществляется и так называемый Ca2+/Na+-обмен, когда из клетки выводятся ионы кальция в обмен на ионы натрия. Обеспечивающий этот обмен ионный насос, как и калий-натриевый, также является электрогенным – один ион кальция заменяется на три иона натрия. Основным результатом деятельности ионных насосов является создание и поддержание градиентов концентрации ионов по обе стороны плазматической мембраны: внутри клетки больше концентрация ионов калия, тогда как снаружи – натрия и кальция. Так, концентрация калия внутри кардиомиоцитов составляет около 140 ммоль/л, а снаружи – 5 ммоль/л. Концентрация же натрия внутри клетки – около 10 ммоль/л, а снаружи – примерно 142 ммоль/л.

Пассивный транспорт ионов через сарколемму, не требующий затрат энергии, осуществляется через ионные каналы – специальные комплексы интегральных белков мембраны. Направление и скорость диффузии определяются разностью внутри- и внеклеточной концентраций ионов, а также зарядом мембраны. Скорость диффузии ионов из области высокой концентрации в область низкой концентрации описывается дифференциальным уравнением Фика, согласно которому


где V – скорость диффузии; k – коэффициент диффузии; S – площадь поверхности мембраны; dC – градиент концентраций; dx – толщина мембраны. Знак «минус» перед уравнением означает, что по мере выравнивания концентраций ионов по обе стороны мембраны скорость диффузии убывает во времени.

Большинство ионных каналов относительно селективны, то есть проницаемы преимущественно для какого-либо одного вида ионов, хотя некоторые ионные каналы могут проводить ионы разных типов. Поскольку ионные каналы образованы белками, которые кодируются определенными генами, то очевидно, что изменения свойств ионных каналов, которые могут наблюдаться при патологии сердца, зависят от нарушений генетического аппарата клетки. Поэтому исследования свойств отдельных ионных каналов являются перспективными для понимания патогенеза и лечения аритмий и других заболеваний сердца.

Классические представления А. Ходжкина и Б. Катца о свойствах ионных каналов клеток возбудимых тканей, в том числе и миокарда, получили дальнейшее развитие в 1970– 1980-е гг. благодаря разработке методики точечной фиксации мембранного потенциала и регистрации тока через одиночные ионные каналы (patch clamp). Эта методика была впервые предложена Э. Неером и Б. Сакманом в 1976 г. и оказала огромное влияние на развитие клеточной электрофизиологии. (В 1991 г. указанные авторы получили Нобелевскую премию по физиологии и медицине «за открытия, касающиеся функций одиночных ионных каналов в клетках».) Ими было установлено, что активация (открытие) и закрытие ионных каналов представляют собой вероятностный процесс, поскольку у каждого канала имеется свой порог открытия. Некоторые ионные каналы могут проводить токи как внутрь клетки, так и из нее, то есть в различных направлениях.

В кардиомиоцитах были обнаружены несколько подтипов калиевых и натриевых каналов, различные виды каналов для ионов кальция и хлора. Приводим краткую характеристику основных типов ионных каналов миокардиальных клеток.

I. Каналы для ионов К+:

а) Потенциалзависимые:

1. Каналы входящего прямого К+ тока (англ. inward rectifier – входящие выпрямляющие), IK+1, способны проводить ионы калия внутрь клетки при изменении потенциала мембраны. Однако в основном эти каналы обеспечивают выходящий ток, то есть движение ионов калия из клетки, в результате чего возникает мембранный потенциал покоя. Блокируются ионами бария Ba2+ и цезия Cs+.

2. Быстро инактивируемые каналы выходящего K+-тока (англ. transient outward – быстро выводящие), Ito. Эти каналы по скорости прохождения через них ионов калия разделяются на два подвида: быстрые (англ. fast), Ito, f, и медленные (англ. slow), Ito, s.

3. Каналы задержанного выходящего тока (англ. delayed rectifier – задержанные выпрямляющие), IK+. В современной электрофизиологической литературе эти каналы разделяют на три подвида: медленно активируемые (IKS), быстро активируемые (IKR) и сверхбыстро активируемые (IKUR).

4. Кальций-регулируемые калиевые каналы, IK+, Ca2+ .

б) Лиганд-активируемые калиевые каналы выходящего тока:

1. Ацетилхолин-зависимые, IK+, Ach.

2. АТФ-активируемые, IK+, ATP.

II. Каналы для ионов Nа+ – потенциалзависимые. Эти каналы по скорости прохождения через них ионов натрия в клетку разделяются на два подвида:

1. Быстрые, блокируемые тетродотоксином, открытие которых формирует входящий ток INa+.

2. Гиперполяризационно-активируемые смешанные Na+/ K+-каналы, открытие которых формирует входящий ток If (от англ. funny – смешной, забавный). Обнаружены в основном в пейсмекерных клетках синусового узла. Особенностью этих каналов является их способность к проведению ионов как натрия, так и калия при гиперполяризации мембраны.

III. Каналы для ионов Са2+ (входящего Са2+-тока) – потенциалзависимые:

1. Т-тип (англ. transient – изменчивые, быстро инактивируемые), ICaT, открываются при величине мембранного потенциала –80… –60 мВ и блокируются ионами Mg2+. Эти каналы обнаружены, в частности, в пейсмекерных клетках синусового и атриовентрикулярного узлов, активируются во время диастолической деполяризации.

2. L-тип (англ. long lasting – долгодействующие), медленно инактивируемые, ICaL, открываются при величине мембранного потенциала –60… –40 мВ и блокируются верапамилом. Эти каналы проницаемы в основном для ионов Са2+ и лишь в минимальной степени Na+ (в соотношении примерно 1000: 1). Обнаружены в клетках рабочего миокарда, а также пейсмекерных клетках, обеспечивают входящий ток кальция во время потенциала действия. Ток через эти каналы усиливается в присутствии агонистов β-адренорецепторов, например адреналина.

3. Поддерживающие каналы входящего Ca2+-тока (англ. sustained inward current – поддерживающий входящий ток), Ist, сходные по свойствам с каналами L-типа. Эти каналы также обнаружены в пейсмекерных клетках синусового и атриовентрикулярного узлов, активируются во время диастолической деполяризации, блокируются антагонистом кальция никардипином.

4. DHPR-типа – дигидропиридиновые, блокируются дигидропиридинами, обнаружены в Т-трубочках мембран рабочих кардиомиоцитов, активируются во время фазы плато потенциала действия, обеспечивая усиление входа кальция. 5. RyaR-типа (рианодиновые), модулируются растительным алкалоидом рианодином, обнаружены в мембранах цистерн саркоплазматического ретикулума (СПР) рабочих кардиомиоцитов, обеспечивают выход кальция из СПР в цитоплазму при электромеханическом сопряжении.

IV. Каналы для ионов Сl:

– неспецифические хлорные каналы ICl;

– кальций-активируемые хлорные каналы ICa2+,Cl.

V. Неспецифические ионные каналы (англ. background), Ibg, могут проводить различные виды положительно заряженных ионов (К+, Na+) внутрь клетки при изменениях мембранного потенциала в лабораторных условиях.

VI. Механически активируемые (англ. stretch-activated) каналы смешанного Ca2+/Na+-тока активируются, например, в ответ на растяжение волокон миокарда.

Наиболее изученными являются натриевые каналы, которые широко представлены во всех возбудимых тканях, включая миокард. Исследованиями установлено, что каждый натриевый канал может находиться в трех состояниях: активированном, или открытом (О), и двух закрытых: инактивированном (И) и реактивированном (Р). Реактивированный канал в ответ на электрический стимул может перейти в открытое состояние, тогда как инактивированный – нет. Инактивированное состояние каналов отмечено при положительных значениях мембранного потенциала +20… +30 мВ, а реактивация возможна лишь при отрицательном значении мембранного потенциала, около –60 мВ. При более выраженной гиперполяризации мембраны (до –75… –80 мВ) вероятность открытия натриевого канала резко возрастает. Открытие и закрытие ионных каналов, обеспечивая движение трансмембранных ионных токов, формирует сдвиги мембранного потенциала кардиомиоцитов. Кроме того, эти процессы имеют значение в изменениях возбудимости и формировании рефрактерности миокарда.

Мембранные потенциалы клеток – водителей ритма в течение диастолы нестабильны, поскольку наблюдается самопроизвольное отклонение мембранного потенциала от максимального отрицательного уровня в сторону деполяризации – так называемая спонтанная (медленная) диастолическая деполяризация. Поэтому для этих клеток термин «потенциал покоя» не применяется, а максимальное отрицательное значение мембранного потенциала (примерно –65… – 50 мВ) называется максимальным диастолическим потенциалом. В сократительных кардиомиоцитах во время диастолы мембранный потенциал практически стабилен, и поэтому называется мембранным потенциалом покоя. Его происхождение в указанных клетках принципиально не отличается от генеза потенциала покоя в любых клетках как возбудимых, так и невозбудимых тканей, например эритроцитах. Напомним кратко ионные механизмы происхождения мембранного потенциала покоя.

Концентрация ионов калия внутри клетки (140 ммоль/л) многократно превышает содержание калия вне ее (5 ммоль/л). Кроме того, внутри клетки имеются отрицательно заряженные органические и в меньшем количестве неорганические анионы, которые уравновешивают заряд положительных ионов калия. Однако в покое проницаемость мембраны для ионов K+ больше, чем для отрицательно заряженных органических анионов, которые практически не могут выйти из клетки. Ионы же калия стремятся (по градиенту концентрации) выйти из клетки, и поэтому по мере их выхода на мембране возникает заряд – отрицательный по отношению к наружной поверхности клетки. При этом определенный момент времени осмотическая сила, способствующая выходу ионов калия, будет уравновешиваться электростатической силой притяжения разноименных (положительных и отрицательных) ионов. В результате на мембране установится динамическое равновесие между ионами К+, которые выходят из клетки, и теми ионами К+, которые притягиваются отрицательными анионами и частично возвращаются в клетку. Таким образом, возникает так называемый равновесный калиевый потенциал, который может быть рассчитан по уравнению Нернста:



где –59 – коэффициент, отражающий заряд и валентность иона; в числителе дроби – концентрация ионов внутри клетки; в знаменателе – снаружи. Рассчитанная таким образом величина калиевого равновесного потенциала составляет около –85…–90 мВ.

Измерения, выполненные с помощью микроэлектродной техники, показали, что величина мембранного потенциала покоя сократительных кардиомиоцитов составляет около – 90 мВ, то есть практически полностью соответствует таковой, рассчитанной по уравнению Нернста. Следовательно, во время диастолы именно выходящий калиевый ток (IK+1) и является определяющим в формировании мембранного потенциала покоя сократительных кардиомиоцитов.

В формировании мембранного потенциала покоя клеток является значимым и ионный ток, создаваемый К+/Nа+насосом. При работе последнего обмен ионов не эквивалентен (на каждые 2 иона К+, введенных в клетку, переносится наружу 3 иона Na+). В результате на мембране возникает дополнительный выходящий из клетки ток положительно заряженных ионов натрия – «насосный ток», который увеличивает отрицательный внутриклеточный заряд примерно на –10 мВ. Активность К+/Nа+ АТФ-азы и величина насосного тока зависят от изменений концентрации ионов, усиливаясь при увеличении внеклеточной концентрации ионов К+ и внутриклеточной концентрации ионов Na+. Следовательно, при увеличении внеклеточной концентрации калия будет усиливаться активный перенос калия внутрь клетки, в результате чего концентрация калия внутри клетки будет возрастать. В соответствии с уравнением Нернста, отрицательный мембранный потенциал покоя в этих условиях увеличится (гиперполяризация мембраны), что может привести к остановке сердца в диастолу. Вот почему в организме человека и теплокровных животных концентрация калия и натрия в плазме крови поддерживается на постоянном уровне (водно-электролитный баланс). При необходимости применения препаратов калия в клинической практике, например в случае желудочковой экстрасистолии, внутривенное введение калийных растворов должно производиться капельно, медленно при контроле изменений электрокардиограммы.

Несколько ионных токов вносят вклад в медленную диастолическую деполяризацию, которая характерна для клеток – водителей сердечного ритма, обладающих автоматией. В клетках синоатриального узла медленную диастолическую деполяризацию опосредуют три ионных тока: входящий ток Na, If, вызванный гиперполяризацией; входящий Ca2+-ток, ICa; и выходящий K+-ток, IK.

В возникновении потенциала действия, или спайка (англ. spike – острие), клеток – водителей ритма основная роль принадлежит входящему току ионов Са2+, а в сократительных кардиомиоцитах – Nа+. Сила данных токов зависит от степени открытия потенциалзависимых ионных каналов, которая особенно возрастает при достижении мембраной порогового потенциала, или критического уровня деполяризации. Этот уровень в клетках – водителях ритма достигается в результате спонтанной диастолической деполяризации. Поскольку скорость последней в пейсмекерах синоатриального узла выше, чем в кардиомиоцитах атриовентрикулярного соединения и проводящей системы желудочков, то в норме эти клетки возбуждаются не спонтанно, а лишь под влиянием импульсов, поступающих от синоатриального узла. В сократительных кардиомиоцитах в норме спонтанная диастолическая деполяризация отсутствует, и поэтому достижение критического уровня деполяризации возможно только после проведения к ним по проводящей системе импульсов от синусового узла. Однако пусковыми стимулами для возбуждения сократительных кардиомиоцитов могут явиться и внешние электрические импульсы, получаемые от искусственных водителей ритма (кардиостимуляторов), а также механическое раздражение, например сильный удар в область грудины при остановке сердца или же прямой его массаж при вскрытой грудной клетке в условиях клиники.

При достижении мембраной кардиомиоцитов критического уровня деполяризации количество открытых ионных каналов резко возрастает, мембрана еще более деполяризуется, что приводит к еще большему открытию ионных каналов. Иными словами, возникает положительная обратная связь: «деполяризация → открытие ионных каналов → усиление входящего тока → возрастание деполяризации». В результате возникает лавинообразный, самоподдерживаемый процесс усиления входящего тока положительно заряженных ионов в клетку. Этот ток не только уменьшает отрицательный заряд мембраны, но и перезаряжает ее до положительных значений, то есть вызывает реверсию потенциала, или овершут (англ. overshoot – перелет). Однако на этом фоне каналы входящего тока натрия и кальция начинают закрываться, и его сила уменьшается, тогда как выходящий ток (ионов калия), напротив, усиливается. В результате положительная величина мембранного потенциала уменьшается до нуля, и в дальнейшем вновь происходит перезарядка мембраны клетки до отрицательных значений, то есть мембранный потенциал возвращается к диастолическому уровню. Таким образом, взаимодействие входящего и выходящих ионных токов формирует потенциал действия кардиомиоцитов.

В 1975 г. П. Крейнфилд предложил классифицировать кардиомиоциты по скорости развития фазы деполяризации потенциала действия на клетки с медленным и быстрым ответом. Соответственно, в сердце можно выделить два основных типа потенциалов действия – быстрый и медленный ответы.

Клетки с медленным ответом представлены в основном пейсмекерными клетками синоатриального узла и атриовентрикулярного соединения, а также специализированными клетками проводящей системы.

К клеткам с быстрым ответом относятся все сократительные кардиомиоциты, а также проводящие кардиомиоциты предсердий и некоторые элементы проводящей системы желудочков (волокна Пуркинье).

В «медленных» клетках в возникновении, а также поддержании потенциала действия основное участие принимает входящий через кальциевые каналы L-типа медленный ток I Ca2+L. В возникновении же потенциала действия клеток с быстрым ответом ведущая роль принадлежит входящему натриевому току I Na+, протекающему через быстрые натриевые каналы. Однако для поддержания длительной (250–300 мс) деполяризации мембраны в клетках с быстрым ответом необходимы также активация кальциевых каналов L-типа и возникновение входящего тока I Ca2+L. Блокада указанных каналов приводит к тому, что потенциал действия «быстрых» клеток становится коротким по продолжительности и сопоставим с таковым в скелетных мышцах (10–20 мс). Рассмотрим более подробно фазы потенциала действия «медленных» и «быстрых» клеток.

Клетки с медленным ответом. Для этого типа кардиомиоцитов характерны меньшая амплитуда потенциала действия и скорость его распространения по сравнению с «быстрыми» клетками. Фазы деполяризации и реполяризации потенциала действия «медленных» клеток протекают более плавно, чем в «быстрых» клетках (рис. 4).

Фаза быстрой деполяризации (0) характеризуется небольшой по сравнению с «быстрыми» клетками скоростью (до 20 В/с) нарастания и обеспечивается входящим током I Са2+L. Пороговый потенциал, при котором активируется достаточное для обеспечения этого тока количество Са2+