А как всё это происходит? С чего начинается научное исследование? И чем заканчивается? Каков процесс? И существует ли он вообще? Ведь сколько существует примеров того, как открытия делались спонтанно, даже во время сна. Например, Ньютон открыл закон всемирного тяготения, когда в саду ему на голову упало яблоко. А Менделееву его таблица приснилась во сне. А сколько открытий было сделано случайно и даже в результате ошибок. Рассказывают, что нагревательные свойства микроволнового излучения, в результате которого была создана микроволновка, были обнаружены, когда в кармане одного из специалистов непонятно почему растаял шоколадный батончик. А пенициллин был обнаружен в чашке, которую забыли помыть. Ну конечно, это всё легенды. Тем более, что учёные часто обладают повышенным чувством юмора и придумывают истории, весьма далёкие от реальности. Хотя существуют документально зафиксированные случаи внезапных озарений, в результате которых появлялись очень важные открытия и полезные изобретения. Но если более подробно изучить обстоятельства, при которых были сделаны, якобы случайно, открытия или изобретения, то окажется, что их в 99,9 % случаев сделали учёные. Они проводили исследования, иногда даже в несколько иной плоскости, но были достаточно наблюдательны и любопытны, чтобы заметить попутно что – то непонятное и пытаться выяснить, что же это такое. Так были открыты рентгеновские лучи, антибиотики, резина и многое другое. Как справедливо сказал Луи Пастер: «Не всякому помогает случай. Судьба одаривает лишь подготовленные умы».
Но всё же, процесс исследования, как правило, планируется, а значит, может быть представлен некоторой последовательностью этапов. Конечно, не всегда исследователи строго следуют разработанному плану. Исследование – это творческий процесс. И иногда в план приходится вносить коррективы. А какие – то этапы по мере изучения поставленной задачи приходится повторять по нескольку раз. Исследования в разных науках имеют свою специфику, которая, конечно, отражается в процессах исследования. Но есть и общее, которое используют все учёные. Рассмотрим последовательно основные этапы унифицированного процесса исследования, целью которого является получение нового знания, и используемые при этом методы (см. рис. 1.1).
Рис. 1.1. Примерная последовательность этапов процесса научного исследования
Любое исследование начинается с вопроса: Что исследовать? Начинающий исследователь, как правило, сталкивается с этим вопросом. Если ему повезло, и он попал в научно – исследовательское учреждение, активно проводящее десятки исследований, в котором немало талантливых учёных, имеющих на своём счету изобретения или другие результаты, высоко оценённые научным сообществом, то выбрать тему исследования труда не составит. Однако даже в этом случае необходимо максимально конкретизировать исследуемую проблему и выяснить, не решена ли она уже. Проблемой, задачей или целью, в данном случае считается тот вопрос, ответ на который должно дать предстоящее исследование.
Конкретизация заключается в первую очередь в определении объекта и предмета исследования. Под объектом, в общем случае, понимается некая система, подсистема или элемент. Предметом является свойство или характеристика. Если исследование планируется проводить применительно к технической системе, например, к оборудованию, то конкретизацией может быть какой – то узел или даже деталь. А характеристикой в последнем случае может быть, например, прочность. А если система социально – экономическая, то объектом часто является предприятие, цех, отдел, работники. А предметом, например, – планирование, оплата труда, социально – психологический климат.
Поскольку получаемое в результате исследования знание должно быть новым, или хотя бы иметь элементы новизны, необходимо убедиться, что проблема является актуальной. Необходимо установить, какие подобные исследования уже проводились, и какие результаты были получены. И какие «белые пятна» остались не исследованы, какие результаты будут иметь новизну. Есть выражение «изобретать велосипед», то есть пытаться изобрести то, что уже давно придумано и прекрасно работает. Так вот надо убедиться, что планируемое исследование не будет таким изобретением. Основными источниками информации для такого поиска служат отчёты о научных исследованиях, диссертации, опубликованные статьи в сборниках научных трудов.
Постановка проблемы является очень важным этапом. Рассказывают, что Альберт Эйнштейн однажды сказал, что правильная постановка проблемы важнее даже, чем её решение. Возможно, это является некоторым преувеличением, однако подчёркивает важность первого этапа процесса исследования.
Гипотеза – предполагаемое, возможное объяснение известных или новых фактов, их взаимосвязи между собой, причин их возникновения; решение поставленной проблемы, задачи и т. п., – то есть форма вероятного знания, поскольку его истинность или ложность предстоит установить в процессе исследования. Не всякое предположение или простая догадка являются научной гипотезой. Часто называют следующие условия, соблюдение которых позволяют считать гипотезу научной:
• гипотеза должна находиться в соответствии с установленными наукой законами. Если гипотеза игнорирует ранее установленные бесспорные знания, то она является выдумкой, и тратить время и силы на её доказательство бессмысленно. Например, если давно доказано, что человек не может летать без тех или иных технических приспособлений, то любая гипотеза о левитации бессмысленна.
• гипотеза должна опираться на все имеющиеся в данной области факты. Главное при этом, чтобы факты были достоверными, установленными научными методами. Тогда игнорирование фактов становится часто уловкой недобросовестных учёных для достижения личных целей.
Иногда ещё одни условием научности гипотезы называют необходимость возможности практической, экспериментальной и вообще эмпирической проверки. В большинстве случаев это так. Однако, в истории науки встречались случаи выдвижения гипотез, которые не могли быть проверены имеющимися на тот момент средствами, но оказались весьма прозорливыми. Так древнегреческий философ Демокрит (460 до н. э. – 370 до н. э.) считается автором атомистической теории строения материи. Но доказана эта теория была только в 20 веке. Другой учёный Ибн Сина (980 – 1037) предположил, что заболевания могут вызываться какими – то мельчайшими существами, которых человеческий глаз не видит. Эта гипотеза была доказана лишь в 19-ом веке, когда появился микроскоп.
В качестве гипотезы может выступить какая – то идея. Поэтому на этом этапе следует использовать известные методы генерации идей, в том числе групповые, например метод мозгового штурма. Часто гипотезами являются возможные причины возникновения тех или явлений, процессов, причины появления проблем. В этом случае можно использовать Диаграмму Исикавы или «карту мнений».
Многие авторитетные учёные считают, что, да, нужно с уважением относиться к результатам исследований, полученным в прошлом. А они зачастую отвергают какие – то направления исследований, решений, признавая их бесперспективными. Но нужно, всё же, немного сомневаться. А вдруг всё же и на, казалось бы, бесперспективном направлении можно получить требуемый результат. Существует шутливое высказывание на эту тему: «Как делается открытие? Все знают, что это невозможно. Наконец находится невежа, который этого не знает. Он и делает открытие».
Выдвижение гипотезы позволяет более целенаправленно проводить исследование. Но в каких – то случаях гипотеза может появиться позже, уже непосредственно в процессе исследования.
Далее рассматриваются этапы исследования, приводящие к получению нового знания (см. рис. 1.2), и используемые при этом методы.
Рис. 1.2 Методы научного исследования
Рассмотрим общенаучные методы получения информации в процессе исследования. Наиболее известным методом, применяемым практически в каждой отрасли науки, является наблюдение.
Наблюдение – элементарный познавательный процесс, состоящий в целенаправленном, организованном, система – тическом восприятии предметов и явлений реальности. «Смотреть» и «наблюдать» – это далеко не одно и то же. Надо отчетливо представлять себе, чем наблюдение, как научный метод, отличается от «смотрения» на проходящих мимо людей, на проезжающие автомобили, на растительность, на другие окружающие любого человека объекты и явления действительности.
Признаками именно научного наблюдения являются:
1. Связь с решением определенной исследовательской задачи. Наблюдающий должен иметь конкретную цель, то есть результат, который будет получен в результате наблюдения.
2. Планомерный и организованный характер. Как известно из менеджмента, любая целенаправленная деятельность должна быть организована и спланирована. То есть надо определить, где и когда будет происходить наблюдение. Кто и каким образом будет наблюдать. С помощью зрения или каких – то устройств. Как будут фиксироваться данные наблюдения. При наблюдениях за действиями людей в процессе работы надо учитывать, что открытое наблюдение не позволит чаще всего зафиксировать то, как это происходит на самом деле. Видео камеры могут помочь избежать влияния наблюдения на его результаты. Есть и другие способы обеспечить истинность полученных сведений.
3. Систематичность, исключающая ошибки случайного происхождения. Нельзя делать выводы на основе одного наблюдения. Наблюдений должно быть столько, чтобы исключить случайность, не типичность происходящего. Например, руководитель должен находить возможность наблюдать за подчинёнными. Как они работают, как общаются друг с другом, какие при этом проявляются особенности характеров. И всё это надо фиксировать, например, записывать в личные файлы. Только на этой основе можно будет объективно судить о наличии у подчинённых тех или иных качеств, а также оценивать их. Специфическим видом наблюдения является измерение.
Измерение – особый вид наблюдения, дающий информацию о количественных отношениях, характерных для измеряемого объекта. Некоторые учёные довольно категорично заявляют, что наука начинается лишь тогда, когда процессы и явления получают количественную оценку. В ином случае результаты исследований не могут считаться научными. Что судить объективно, достоверно о чем бы то ни было можно только при условии измеримости, то есть возможности количественной оценки происходящего. Действительно, о происходящих в микромире процессах физики судят с помощью специально созданных приборов, измеряющих скорость и массу частиц. Исследования в астрономии также требуют измерений расстояний, масс звёзд и планет, интенсивности их излучений.
В экономике невозможно судить о процессах без статистики изменений ВВП, объёмов производства, прибыли и т. п. В социологии исследования также должны быть построены на опросах определённого количества респондентов, чтобы считаться научными. Поэтому видимо действительно необходимо стремится к измерениям изучаемых процессов, чтобы повысить степень их достоверности.
Зачастую для получения нужных сведений необходимо не просто наблюдать, а увидеть реакцию предмета наблюдения на какие – то события, которые часто сами по себе происходят редко, или вообще могут не произойти. Тогда используется еще один научный метод: эксперимент.
Эксперимент – активное воздействие на объект (предмет) исследования, на окружающую его среду и наблюдение за происходящими изменениями. Эксперименты проводят в тех случаях, когда результат его в точности неизвестен. Существует, пожалуй, две ситуации, в которых возникает необходимость в проведении экспериментов. Во – первых, в некоторых исследованиях этот метод является основным, рабочим. Например, в физике элементарных частиц теоретики строят обоснованные гипотезы, которые иначе, чем с помощью практики, то есть экспериментов, подтвердить или опровергнуть невозможно. Обнаружение частиц, из которых состоит материя, проводится с помощью специальных устройств – ускорителей. Их называют синхрофазотроны. Определённые частицы разгоняют в ускорителе до высоких скоростей и направляют в специальный экран. Столкновение частиц с экраном на огромной скорости приводит к дроблению материала экрана на мелкие частицы, следы которых затем изучают. Так была обнаружена большая часть элементарных частиц, которые известны сегодня. Причём само проведение экспериментов также представляет непростую задачу. Приходится создавать специальное оборудование, менять состав разгоняемых частиц, их скорость, материал экрана и т. д. Также часто эксперименты проводятся в химии, биологии, медицине. Вопрос, который зачастую ставится перед этим: «А что, если….?».
Вторая ситуация связана с проведением экспериментальной проверки разработки. Например, произведённые расчёты и лабораторные исследования указывают на возможность использовать разработанную технологию и соответствующее оборудование в промышленности. Чтобы убедиться, что и в реальных условиях всё это будет работать, строят физическую модель уменьшенного масштаба и на ней проверяют эту разработку. А иногда, когда ошибка может обойтись очень дорого, производят и настоящее оборудование, и проверяют работу в реальных (или почти реальных) условиях. Разработанную новую систему премирования работников также целесообразно проверить до перехода на неё всех работающих. В порядке эксперимента на неё стоит перевести только часть работников: участок, группу, – и по результатам судить, стоит ли распространять этот опыт на всех.
Все, что становится известным в результате использования методов получения информации, должно быть тем или иным образом зафиксировано. Тогда эта информация превращается в факты.
Факты – ставшие известными в результате наблюдений, измерений, экспериментов и т. п. фрагменты реальности, зафиксированные с помощью тех или иных документов.
Достоверность научных фактов зависит от добросовестности исследователей и от правильного применения методов исследования.
Для обработки полученной информации используются следующие методы.
Классификация – распределение данного множества предметов на «классы» (виды, типы, группы и т. п.) по определенному общему для каждого класса признаку. Часто классификация является начальным этапом исследования, позволяющая определить место объекта и предмета исследования, а также упорядочить зафиксированные факты. При этом различают естественную и искусственную классификации.
Естественная (научная) классификация – осуществляется по существенным объективным признакам, характеризующим предметы множества. Космические объекты классифицируются на «звезды», «планеты», «астероиды», «спутники» по вполне определенным и, главное, объективным критериям. На Земле различают океаны, моря, озера также по определенным объективным признакам. Ярким примером научной классификации является систематизация растительного и животного мира, созданная шведским естествоиспытателем Карлом Линнеем в 18 веке, которой пользуются биологи до сих пор.
Искусственная (вспомогательная) классификация
О проекте
О подписке