Читать книгу «Генеративный искусственный интеллект #Forge&flux. Учебное пособие для школьников старших классов и студентов первых курсов вузов» онлайн полностью📖 — Александра Юрьевича Чесалова — MyBook.
image


















































Исходя из этих скромных данных, мы можем с вами сделать вывод о том, что появление искусственного сверхинтеллекта возможно лишь тогда, когда человечество создаст квантовые носители информации и квантовый суперкомпьютер, сопоставимый по своим вычислительным мощностям с нашим мозгом27.

Тем не менее ученые из разных стран полны энтузиазма и ведут работы по созданию общего, а затем уже и суперинтеллекта. Приведу некоторые из этих направлений, которые, на мой взгляд, будут вам интересны:

– Эмуляция работы человеческого мозга. Задача заключается в создании полной цифровой копии человеческого мозга. Для этого осуществляется сканирование всей структуры мозга человека для создания точной цифровой карты его нейронных связей.

– Мозговые импланты. Ученые работают над тем, чтобы создать такие устройства, которые можно будет встраивать в человеческий мозг для улучшения его работы. Предполагается, что это позволит достичь уровня сверхразума за счет симбиоза человека и машины.

– Создание эволюционных распределенных систем искусственного интеллекта. Основная идея этого подхода заключается в том, чтобы системы искусственного интеллекта смогли самостоятельно развиваться и эволюционировать с тем, чтобы через несколько этапов превратиться в суперинтеллект.

– Нейроморфные вычисления. Ученые работают над тем, чтобы создать нейроморфные компьютеры, работа которых основана на работе нейронных и синаптических структур человеческого мозга. Считается, что такие суперкомпьютеры в десятки раз производительнее современных суперкомпьютеров, работающих на графических ускорителях28.

По моему мнению, вам будет интересна точка зрения, которая имеет отношение к теме искусственного сверхинтеллекта, выдающегося физика-теоретика Стивена Хокинга, которая, возможно, откроет вам новую перспективу нашего с вами будущего: «Боюсь, искусственный интеллект может полностью заменить людей. Если сейчас люди разрабатывают компьютерные вирусы, то в будущем кто-то сможет создать искусственный интеллект, который будет способен улучшать и воспроизводить самого себя. Это станет новой формой жизни, которая превзойдет человека».


Объяснимый искусственный интеллект (Explainable Artificial Intelligence, XAI) – набор правил и методов, позволяющих пользователям системы искусственного интеллекта понять, почему алгоритмы машинного обучения этой системы пришли именно к тем или иным результатам работы и/или выводам. Объяснимый искусственный интеллект обеспечивает прозрачность работы используемой системы ИИ для ее пользователей, по своей сути противопоставляя себя принципу «черного ящика» в машинном обучении.

Вопросы объяснимости получаемых результатов работы системы искусственного интеллекта, на самом деле, интересуют не только нас с вами как пользователей таких систем, но и инженеров-программистов, их создающих.

Когда разработчики переходят от программирования и экспериментов по решению простейших задач автоматизации к разработке серьезных программных систем, например систем поддержки принятия решений, они должны не только сами понимать, на основании чего получаются те или иные результаты работы, но и быть готовыми объяснить их происхождение пользователям системы искусственного интеллекта, которую они разрабатывают. Это необходимо делать еще и потому, что каждый разработчик несет персональную ответственность за создаваемые им алгоритмы, модели, программы, системы и другие приложения и сервисы, которые впоследствии будут использованы людьми. Неверно принятое решение на «необъяснимых» результатах работы системы искусственного интеллекта может привести к катастрофическим последствиям как для отдельно взятого человека, так и для отдельно взятой компании, города или даже целой страны.

Очень часто бывает так, что программист, обучающий модель, не является экспертом в той или иной предметной области, и это, на самом деле, большая проблема. Например, программист не является врачом, что, конечно, очевидно. Как вам известно, многие врачи обладают огромным запасом знаний, опыта и интуиции, которые с первого взгляда могут сказать, что нельзя доверять тем или иным данным, полученным от использования какой-то конкретной модели, применяемой в системе поддержки принятия решений. Специалист сразу отметит, что модель делает неразумный прогноз. Несомненно, программисты и врачи должны работать в тесной кооперации, но очень часто бывает так, что программист принимает решение о тех или иных результатах работы самостоятельно, что может повлечь за собой наличие скрытой ошибки при расчетах и точности получаемых данных. Именно в таких случаях при разработке систем искусственного интеллекта инженеры-программисты должны уделять большое внимание вопросам объяснимости.

На рисунке ниже показан современный подход к созданию объяснимого искусственного интеллекта.



Как мы с вами видим, на сегодняшний день необходимо создание дополнительных инструментов понимания и объяснимости работы системы искусственного интеллекта, которые бы были полезными при принятии решений о том, заслуживают полученные с ее помощью данные доверия или нет29, 30.

Например, инженеры-программисты для объяснения предсказаний базовых моделей машинного обучения и оценки их полезности в различных задачах классификации и регрессии используют библиотеку «Lime». На сегодняшний день библиотека работает с анализом текстовых и табличных классификаторов, а также работает с классификаторами изображений. Lime может объяснить любой классификатор «черного ящика» с двумя или более классами31.

Как мы с вами видим, необходимость в реализации объяснимого искусственного интеллекта как для разработчика, так и для нас с вами как пользователей систем искусственного интеллекта становится не только очевидной, но и вполне важной и ответственной задачей.

Еще одним немаловажным свойством системы искусственного интеллекта, выступающим наравне с «объяснимостью», является ее «прозрачность». В английском языке слово «прозрачность» (англ. «transparency») является синонимом слову «безошибочность» (англ. «unmistakableness»).

Прозрачность работы систем искусственного интеллекта обеспечивается предоставлением полноценной открытой информации для пользователей систем искусственного интеллекта (то есть для нас с вами) о том, какие продукты или услуги предоставляются напрямую или с помощью систем искусственного интеллекта. А также какие управленческие решения принимаются теми или иными физическими лицами, компаниями или организациями на основе данных, полученных и предоставленных системами искусственного интеллекта. Эта информация должна указывать на то, что принимаемые решения не нарушают права человека (пользователей систем искусственного интеллекта) и не подвергают его какой-либо опасности. Высокий уровень прозрачности обеспечит возможность контроля со стороны общества, что, в свою очередь, может способствовать снижению уровня коррупции, дискриминации или рисков возникновения того или иного вида ущерба.

Таким образом, обеспечение объяснимости и прозрачности работы систем искусственного интеллекта является существенным условием не только при их проектировании и разработке, но и при их эксплуатации с целью обеспечения уважения к частной жизни граждан и защиты прав и свобод человека в течение всего жизненного цикла создаваемых систем ИИ32, 33, 34.

Термины «прозрачность» и «объяснимость» являются неотъемлемыми критериями оценки системы «доверенного искусственного интеллекта», с определением которой мы познакомимся с вами в следующей главе.


Доверенный искусственный интеллект (Trusted Artificial Intelligence) – это прикладная система искусственного интеллекта, обеспечивающая выполнение возложенных на нее задач с учетом ряда дополнительных требований, обеспечивающих доверие к результатам работы системы, включающих в себя:

достоверность и интерпретируемость выводов и предлагаемых решений, полученных с помощью системы и проверенных на верифицированных тестовых примерах;

безопасность как с точки зрения невозможности причинения вреда пользователям системы на протяжении всего жизненного цикла системы, так и с точки зрения защиты от взлома, несанкционированного доступа и других негативных внешних воздействий;

приватность и верифицируемость данных, с которыми работают алгоритмы искусственного интеллекта, включая разграничение доступа и другие связанные с этим вопросы;

внедрение этических аспектов применения искусственного интеллекта35.






Надежный искусственный интеллект основан на идее о том, что доверие к его работе создает основу общества, экономики и устойчивого развития. Люди, организации и общества могут реализовать весь потенциал систем искусственного интеллекта только в том случае, если доверие может быть установлено при его разработке, внедрении, поддержке и использовании36, 37.


Этичный искусственный интеллект (Ethical Artificial Intelligence) – это система доверенного искусственного интеллекта, придерживающаяся в своей работе строго определенных этических принципов в отношении фундаментальных человеческих ценностных установок, включая такие, как уважение, защита и поощрение прав человека; благополучие окружающей среды и экосистем; обеспечение разнообразия и инклюзивности (процесса включения людей с физической и ментальной инвалидностью в полноценную общественную жизнь); жизнь в мирных, справедливых и взаимосвязанных обществах38.


Генеративный искусственный интеллект – это самый перспективный метод глубокого машинного обучения, при котором нейросеть изучает массив больших данных, например фотографии, видео или текст, на определенную тему, после чего, используя полученную информацию, создает свой собственный уникальный контент.






Помимо уникального контента, генеративный искусственный интеллект может создавать уникальные технологические, производственные и бизнес-процессы, которые могут помочь улучшить различные операции. Например, улучшить процессы поставки товаров и услуг, процессы производства продукции, управления хранением готовой продукции и ее продажами.

Генеративный искусственный интеллект может быть использован для создания новых лекарств в медицине и новых материалов в химии и промышленности. Если мы с вами рассматриваем генерацию изображений, то его применение может быть не только в компьютерных играх, но и в производстве новых продуктов, рекламе, маркетинге, электронной коммерции и обучении.

Также генеративный искусственный интеллект применяют для создания музыки, голоса, литературных произведений, извлечения ключевой информации, поиска решений, видео, дизайна и много другого.

Многие компании и предприятия рассматривают генеративный искусственный интеллект как ключевой драйвер для последующих этапов цифровой трансформации и автоматизации39.

Как отметил руководитель Bloomberg Intelligence Мандип Сингх: «В течение следующих десяти лет мир ожидает взрывной рост в секторе генеративного ИИ, который обещает фундаментально изменить способ работы технологического сектора».





Согласно отчету Bloomberg Intelligence, облачное подразделение Amazon.com Inc., Google Alphabet Inc., Nvidia Corp. и Microsoft Corp. (владеющая OpenAI) окажутся в числе лидеров рынка искусственного интеллекта к 2032 году.

По прогнозам Bloomberg Intelligence, крупнейшим фактором роста доходов от генеративного ИИ станет спрос на инфраструктуру, необходимую для обучения моделей ИИ, который к 2032 году составит около 247 миллиардов долларов. Ожидается, что к 2032 году годовой доход от бизнеса цифровой рекламы с использованием ИИ достигнет 192 миллиардов долларов, а доход от серверов ИИ может достичь 134 миллиардов долларов, говорится в отчете. В итоге рынок генеративного искусственного интеллекта к 2032 году достигнет 1,3 триллиона долларов40.

На сегодняшний день, по мнению ученых и специалистов, возможности систем генеративного искусственного интеллекта практически не имеют границ. Они способны с большой скоростью создавать новый уникальный контент, идеи, разговоры, истории, сценарии, художественные произведения в стиле знаменитых писателей, произведения изобразительного искусства в стиле знаменитых художников, видео и музыку в стиле знаменитых композиторов разных эпох41.

Работа генеративного искусственного интеллекта основана на базовых моделях глубокого машинного обучения, предварительно обученных на больших данных. Ярким примером базовой модели является модель GPT (не путайте с ChatGPT, который является web-приложением). Она представляет собой большую языковую модель (или, как еще говорят, семейством моделей нейронных сетей), специально разработанную для решения языковых задач, таких как обобщение, генерация текста в реальном времени, классификация, открытые вопросы и ответы, а также извлечение информации. Появление моделей GPT стало переломным моментом в широком распространении машинного обучения, поскольку теперь эту технологию можно использовать для автоматизации и улучшения широкого спектра задач, начиная с переводов текстов на различные языки и заканчивая написанием постов в блогах, созданием веб-сайтов, визуальных эффектов, анимации, написанием программного кода, анализом данных и созданием интеллектуальных голосовых помощников. Ценность подобных моделей заключается в скорости их работы и направлениях, в которых они могут быть применены42, 43.


Модель глубокого машинного обучения представляет собой сложную алгоритмическую структуру, обученную на больших наборах данных, чтобы впоследствии автономно выполнять определенные задачи, такие как генерация изображений, текста, переводы на другие языки или принятие решений. Эти модели обучаются на разнородных или однородных данных, чтобы имитировать когнитивные способности человека, что позволяет им понимать наши запросы и генерировать новый уникальный контент. Как правило, модель представляет собой компьютерный файл большого размера. Качество работы модели во многом зависит от качества и объема данных, на которых она была обучена.

Наиболее популярные модели, которые позволяют создавать уникальные изображения из текстовых описаний (запросов), – это Stable Diffusion, Midjourney и DALL-E, а с 2024 года – FLUX.1 и FLUX1.1.

Существуют также языковые модели, которые могут генерировать текст, переводить тексты на иностранные языки, писать различные виды креативного контента и отвечать на вопросы пользователей. Наиболее известные среди них – это Generative Pre-trained Transformer (GPT), GPT4-Omni, Llama, Claude, Cohere Command (Command R и Command R+), Mistral, Gemini и другие.

Также есть модели, которые способны генерировать программный код на различных языках программирования (например, C#, Java, Python, JavaScript, SQL, Go, PHP и Shell). Наиболее известные – это CodeWhisperer, CodeLlama и Codex.

К системам генеративного искусственного интеллекта относится система Stable Diffusion WebUI Forge, которую мы изучим в этой книге. А в качестве базовых моделей для генерации изображений мы будем использовать различные версии модели FLUX.1, созданные Black Forest Lab.

Возможно, в ближайшем будущем многое из того, что вы будете создавать или использовать в своей учебе и работе, будет создано с помощью различных систем генеративного искусственного интеллекта.