Читать книгу «Генеративный искусственный интеллект #Forge&flux. Учебное пособие для школьников старших классов и студентов первых курсов вузов» онлайн полностью📖 — Александра Юрьевича Чесалова — MyBook.
image

Об авторе


Александр Юрьевич Чесалов родился 10 февраля 1977 года в городе Тверь, Российская Федерация.

Экономист по образованию со специализацией «Информационные системы в экономике». Окончил с отличием Тверской Государственный Технический Университет. Защитил докторскую диссертацию на тему «Методология определения операционных характеристик и рациональной структуры региональных распределенных сервисных сетей передачи, обработки и хранения данных».

Имеет различные сертификаты в области ИТ: IBM Professional certificate foundations of AI; IBM Professional certificate Essential Technologies for Business; Rutgers the State University of New Jersey: New Technologies for Business Leaders; University of London; Deeplearning.ai; Microsoft Azure; BSI ISO/IEC 27001; IBM DB2; IBM Lotus Domino и другие.

Александр Юрьевич ведет активную экспертную деятельность. Он является членом Экспертного совета при Комитете Государственной Думы по науке и высшему образованию по вопросам развития информационных технологий в сфере образования и науки, а также членом Российской ассоциации искусственного интеллекта (РАИИ).

Автор более двадцати книг по информационным технологиям, включая: «Моя цифровая реальность»; «Цифровая трансформация»; «Цифровая экосистема Института омбудсмена: концепция, технологии, практика»; «Как создать центр искусственного интеллекта за 100 дней», «Глоссариум по искусственному интеллекту: 2500 терминов», «Невероятный искусственный интеллект Easy Diffusion 3.0», и многих других. Опубликовал научно-исследовательскую работу (монографию) на тему «Методология построения распределенных сетей передачи, обработки и хранения данных» в двух томах.

Что такое генеративный искусственный интеллект?


Знакомство с невероятным миром генеративного искусственного интеллекта мы должны начать с самого простого и важного – с определения, что же такое «искусственный интеллект».

Термин искусственный интеллект (англ. Artificial Intelligence, AI) появился уже очень давно. Впервые он был введен ученым и изобретателем Джоном Маккарти в 1956 году6, 7.






На сегодняшний день ученые, инженеры, маркетологи, программисты и другие специалисты из разных областей экономики используют совершенно разные определения термина «искусственный интеллект». Это связано, прежде всего, с тем, что искусственный интеллект широко применяется в различных сферах человеческой деятельности в различных отраслях экономики. Например, искусственный интеллект используют в образовании, медицине, государственном управлении, финансах, промышленности, автомобилестроении, космонавтике и многих других направлениях. В каждом из этих направлений есть свои уникальные особенности его развития или специализация его применения8.

Так что же такое искусственный интеллект?


Искусственный интеллект (ИИ) – это прежде всего компьютерная программа, написанная человеком (программистом, инженером, ученым или другим специалистом), которая чаще всего имитирует поведение или умственную деятельность человека или какого-либо другого живого существа, живущего на нашей планете.

Наличие и само существование искусственного интеллекта неразрывно и тесно связано с компьютерами, новыми информационными, вычислительными, сетевыми и другими технологиями.

В том случае, когда для обеспечения работы искусственного интеллекта требуются большие вычислительные мощности современных суперкомпьютеров и набор различных вспомогательных программных продуктов, о нем говорят как о сочетании технических и технологических решений, основная задача которых заключается в обеспечении высокого уровня «интеллекта» такой системы.

Изначально искусственный интеллект обучают на различных видах данных. Этот процесс обучения называется машинным обучением (Machine Learning), а данные называют «большими данными» (Big Data).


Машинное обучение (Machine Learning, ML) – это область исследования, которая дает компьютерам возможность учиться без явного программирования. Также под машинным обучением понимают технологии автоматического обучения алгоритмов искусственного интеллекта распознаванию и классификации на тестовых выборках объектов для повышения качества распознавания, обработки и анализа данных, прогнозирования. Также машинное обучение определяют как одно из направлений (подмножеств) искусственного интеллекта, благодаря которому воплощается ключевое свойство интеллектуальных компьютерных систем – самообучение на основе анализа и обработки больших разнородных данных. Чем больше объем информации и ее разнообразие, тем проще искусственному интеллекту найти закономерности и тем точнее будет получаемый результат9, 10, 11, 12.


Глубокое обучение (Deep Learning) – это разновидность машинного обучения на основе многослойных искусственных нейронных сетей, а также набор алгоритмов и методов машинного обучения на основе различных видов представления данных. Обучение может быть контролируемым, полуконтролируемым или неконтролируемым. Использование в глубоком обучении рекуррентных нейронных сетей позволяет эффективно решать задачи в областях компьютерного зрения, распознавания речи, обработки текстов на естественном языке, машинного перевода, биоинформатики и др.13.


Большие данные (Big Data) – это термин для наборов цифровых данных. Большой размер данных и их сложность требует значительных вычислительных мощностей компьютеров и специальных программных инструментов для их анализа и представления. К большим данным относят массивы числовых данных, изображения, аудио- и видеофайлы. Существуют структурированные и неструктурированные данные14.


Сегодня ученые и инженеры, совершенствуя различные технологии, стремятся создать самообучаемые и автономные системы искусственного интеллекта, которые должны по своим возможностям приблизиться к интеллектуальным и функциональным возможностям человека.

С точки зрения ученых, искусственный интеллект – это компьютерная система, основанная на комплексе научных и инженерных знаний, а также технологий создания интеллектуальных машин, программ, сервисов и приложений, имитирующая мыслительные процессы человека или живых существ, способная с определенной степенью автономности воспринимать информацию, обучаться и принимать решения на основе анализа больших массивов данных15, 16.


С точки зрения инженеров-программистов, искусственный интеллект – это область информатики, объединяющая вычислительные технологии с надежными наборами данных, в рамках которой разрабатываются компьютерные программы для выполнения задач, способных имитировать человеческий интеллект – обнаруживать смысл, обобщать и делать выводы, выявлять взаимосвязи и обучаться с учетом накопленного опыта17, 18, 19.


Технологии искусственного интеллекта – это технологии, основанные на использовании искусственного интеллекта, включая компьютерное зрение, обработку естественного языка, распознавание и синтез речи, интеллектуальную поддержку принятия решений и перспективные методы искусственного интеллекта20.


Определение термина «искусственный интеллект» неразрывно связано с определением «система искусственного интеллекта».


Система искусственного интеллекта – это компьютерная программа, которая представляет собой реализацию новых технологий обработки информации с целью поиска, анализа и синтеза данных из окружающего нас мира для получения о нем новых знаний и решения на их основе различных жизненно важных задач. Система искусственного интеллекта включает в себя модели и алгоритмы, обеспечивающие ее способность обучения и представления (визуализации) новых данных в виде текста, чисел, аудио, видео или изображений21.


Нужно отметить, что классификаций систем искусственного интеллекта достаточно много. Чаще всего используют следующую классификацию:






На сегодняшний день искусственный интеллект объединяет в себе сочетание машинного обучения (глубокое обучение и обучение с подкреплением), машинного мышления (планирование, составление графиков, представление знаний, поиск и оптимизацию), вычислительные технологии и суперкомпьютеры, а также робототехнику (контроль, восприятие, датчики и исполнительные механизмы, а также интеграцию всех других технологий в киберфизические системы)22.


Узкий искусственный интеллект (Artificial Narrow Intelligence, ANI) – это искусственный интеллект, обученный и умеющий выполнять эффективно только определенные узкоспециализированные задачи. Слабый искусственный интеллект является самым распространенным вариантом применения технологий искусственного интеллекта, к которым, прежде всего, относят так называемое «машинное обучение» и «глубокое машинное обучение»23.



Современные системы узкого искусственного интеллекта запрограммированы на выполнение одной комплексной задачи за раз, извлекая информацию из определенного набора данных. Вся их работа чаще всего сводится к постоянному выполнению однотипных задач с целью получения наилучшего результата в узкой области деятельности24, 25.

К слабому искусственному интеллекту относят: системы распознавания изображений и лиц, чат-боты, разговорных помощников, беспилотные автомобили, рекомендательные и аналитические информационные системы и так далее.

Всем нам знакомые Яндекс Алиса, Apple Siri, Amazon Alexa или суперкомпьютер IBM Watson относятся также, как это ни странно, к узкому или слабому искусственному интеллекту.



Все версии программы ChatGPT, созданной компанией OpenAI, которая способна писать не только посты в интернете, но и создавать собственные литературные произведения, также относятся к узкому искусственному интеллекту.

Программа Stable Diffusion WebUI Forge, которую мы изучаем в этой книге, является системой слабого и узкоспециализированного искусственного интеллекта. Перед этой системой мы ставим задачу – создать для нас новое уникальное изображение из нашего описания или из другого изображения, и Stable Diffusion WebUI Forge решает эту задачу.

Так почему все-таки искусственный интеллект называют слабым?

Слабый искусственный интеллект, каким бы он ни казался «умным» или «сильным», на сегодняшний день не может сравниться с возможностями и потенциалом человеческого интеллекта. Он не обладает волей и не способен на творчество. Слабый искусственный интеллект не способен функционировать самостоятельно, не способен к самообслуживанию, саморазвитию, самосовершенствованию, размножению и к взаимодействию с другими системами искусственного интеллекта, как это делают люди.

Несмотря на все это, у такого вида искусственного интеллекта есть много неоспоримых преимуществ, которые заключается в том, что он способен выполнять конкретные узкоспециализированные задачи очень быстро, качественно и точно, порой даже лучше, чем сам человек. Там, где человек может сильно устать, искусственный интеллект может помочь ему выполнить работу самостоятельно в течение долгого времени. Совместная работа человека и искусственного интеллекта очень сильно сказывается на производительности и эффективности выполняемой работы. Описанный процесс очень часто называют «автоматизацией рутинных задач», который значительно облегчает нашу с вами повседневную жизнь.

Использование слабого искусственного интеллекта дает нам больше времени на саморазвитие, отдых и на достижение новых целей.


Общий искусственный интеллект (Artificial General Intelligence) – это прикладная система искусственного интеллекта, технологии и алгоритмы которой могут выполнять значительное число задач анализа данных, принятия на их основе решений и их реализация, обеспечивающая имитацию интеллектуальных способностей человека и объяснимость предлагаемых человеку вариантов решений, воспроизводя и иногда превышая широкий спектр когнитивных и интеллектуальных способностей человека, включая интерпретацию внешних данных и воздействий и извлечение из них смыслов, использование полученных знаний для обучения, планирования и принятия решений в условиях неопределенности и достижения конкретных целей и задач при помощи гибкой адаптации к изменяющимся условиям и взаимодействию с внешней средой26.

Другими словами, сильный искусственный интеллект – это интеллект, не отличимый от человеческого, обладающий самосознанием. Он способен видеть, слышать, учиться, решать задачи, планировать и самосовершенствоваться, а самое главное, он имеет воображение и способен к творчеству.


Общий искусственный интеллект и искусственный интеллект на уровне человека (Human Level Machine Intelligence) – это синонимы сильного искусственного интеллекта. Оба термина обозначают степень развития искусственного интеллекта на уровне человека.


На сегодняшний день сильный или общий искусственный интеллект существует только как теоретическая концепция. Некоторые ученые предполагают, что ее практическая реализация случится не ранее 2045 года. Тем не менее среди большого числа ученых и практиков существует устойчивое мнение, что все, даже самые современные и совершенные системы искусственного интеллекта, которые существуют на сегодняшний день, являются «слабым ИИ», а прогнозы о том, что к 2045 году будет создан сильный ИИ, являются мифом. Причина такому мнению – это сверхсложность устройства нашего головного мозга с точки зрения создания подобного ему суперкомпьютера, который хоть сколь-нибудь смог приблизиться по своей вычислительной мощности к человеческому мозгу. Возможно, в ближайшем будущем прорыв будет осуществлен в области квантовых компьютеров и вычислений, который позволит приблизиться к созданию сильного искусственного интеллекта.


Искусственный сверхинтеллект (Artificial Super Intelligence, ASI) – это термин, который обозначает наивысшую степень развития искусственного интеллекта, превосходящую человеческие возможности во всех аспектах его жизнедеятельности.






На сегодняшний день систем искусственного сверхинтеллекта, так же, как и систем сильного или общего искусственного интеллекта, не существует. Многие ученые считают, что до создания суперинтеллекта пройдет очень много времени, но большинство из них все же сходятся во мнении, что это рано или поздно произойдет.

На мой взгляд, случится это тогда, когда люди смогут создать такие суперкомпьютеры и системы хранения информации, которые будут способны производить вычисления и хранить данные, как наш человеческий мозг.

Знаете ли вы, что наш с вами мозг и нервная система – это суперкомпьютер со своей системой хранения данных и интерфейсов взаимодействия с внешним миром?

За обработку информации в нашем мозге отвечают порядка 86–100 млрд нейронов (нейронных клеток), которые меняют свое состояние до 50 раз в секунду. Число возможных состояний нашего мозга = 101000000 (количество возможных комбинаций возбуждения или торможения нейронов), тогда как количество атомов во Вселенной = 1080.

Кроме того, на сегодняшний день никто не может дать ответ на вопрос, сколько экзабайт (1018) или йоттабайт (1024) данных и в какой форме хранится в нашем мозге.