Читать книгу «Физика. Порядок вещей, или Осознание знаний. Книга 2» онлайн полностью📖 — Александра Алексеевича Астахова — MyBook.
image








Введём обозначения.

r1 – начальный радиус поворотного движения

r2 – конечный радиус поворотного движения

ω1 – исходная угловая скорость

ω2 – угловая скорость в отсутствие поддерживающей силы

← – направление силы, за счёт которой происходит уменьшение скорости

→ – направление силы, за счёт которой происходит увеличение скорости

Fки – истинная сила Кориолиса (это обычная реальная сила, которая замедляет вращение при радиальном движении от центра вращения в отсутствие поддерживающей силы)

Fп→– полная поддерживающая сила, которая равна по величине классической силе Кориолиса

Fпс – статическая (уравновешенная) часть поддерживающей силы

Fпд→ – динамическая часть поддерживающей силы

Vлн – начальная линейная скорость исходного вращательного движения (Vлн = ω1 * r1)

Vли – истинная линейная скорость, которую тело приобретает под действием истинной силы Кориолиса в отсутствие поддерживающей силы (Vли = ω2 * r2)

Vлд – динамическая линейная скорость, которую тело приобретает под воздействием динамической составляющей поддерживающей силы (Vлд = ω1 * r2)

Любая сила определяется не только геометрическим приращением движения материальной точки, но и силовыми затратами на преодоление сил противодействия движению. Следовательно, для определения полного силового напряжения Кориолиса (Fп) необходимо учитывать не только реальную динамику приращения поворотного движения, но и статическое напряжение, связанное с преодолением поддерживающей силой сопротивления истинной силы Кориолиса.

За счёт истинной силы Кориолиса (←Fки) линейная скорость начальная должна уменьшится до истинной линейной скорости (Vли←Vлн←Fки). Чтобы этого не произошло поддерживающая сила (Fп→) должна компенсировать истинную силу Кориолиса, т.е. восстановить (в нашем случае увеличить) истинную линейную скорость до начальной линейной скорости. При этом уравновешивающая часть поддерживающей силы станет её статической составляющей (Fпс→Vли→Vлн). А поскольку в образовании статического уравновешенного напряжения участвуют две силы, то весь уравновешивающий процесс схематично можно выразить следующим образом (Fпс→Vли ↔ Vлн ←Fки).

После уравновешивания истинной силы Кориолиса статической частью поддерживающей силы линейная скорость будет поддерживаться на уровне начальной линейной скорости на каждом текущем радиусе. Однако поскольку радиус у нас непрерывно увеличивается, то угловая скорость по-прежнему будет уменьшаться, хотя и с меньшей интенсивностью. Чтобы этого не произошло необходимо дальнейшее увеличение линейной скорости до значения динамической линейной скорости (Vлд). Часть поддерживающей силы, направленной на это, мы обозначили, как динамическую поддерживающую силу, которая будет увеличивать линейную скорость всей области статического напряжения:

Fпд→ (Fпс→Vли↔Vлн←Fки) →Vлд

Понятно, что сонаправленные составляющие поддерживающей силы и образуют её полную величину или полное напряжение Кориолиса:

Fпд→ + Fпс→ = Fп

Однако в динамике поворотного движения участвует только динамическая составляющая поддерживающей силы (см. гл. 4.3.). Именно реакция на динамическую часть поддерживающей силы и есть сила инерции Кориолиса. Рассчитаем полное напряжение Кориолиса и все его составляющие, т.е. составляющие поддерживающей силы при помощи мерной динамики вращательного движения. Начнём с полной поддерживающей силы или полного силового напряжения Кориолиса.

Абсолютная величина полного силового напряжения Кориолиса с учётом истинной силы Кориолиса определяется изменением линейной скорости от (Vли = ω2 * r2) до (Vлд = ω1 * r2). Зная граничные значения линейной скорости поворотного движения (Vли = ω2 * r2) и (Vлд = ω1 * r2), определим граничные угловые скорости приведённого вращения (ω1рад) и (ω2рад) для этих линейных скоростей, как частное от деления граничных линейных скоростей на меру пространства во вращательном движении (rрад).

ω1рад = ω2 * r2 / rгад

ω2рад = ω1 * r2 / rрад

Отсюда приращение угловой скорости эквивалентного вращательного движения для определения полной силы Кориолиса равно:

Δωрад = ω2 рад – ω1рад = ω1 * r2 / rрад – ω2 * r2 / rрад (4.2.1)

Тогда уравнение динамики вращательного движения, приведённого к общему эквиваленту – мерному радиану примет вид:

Fрад = – Fк = m * (ω2 * r– ω1 * r2) / Δt (4.2.2)

где

Fк: сила Кориолиса.

Или в более общем виде:

Fрад = – Fк = (m * rрад * Δωрад) / Δt (4.2.3)

Поскольку

Δωрад / Δt = εрад,

то после дифференцирования выражения (4.2.3) в предположении, что переменной дифференцирования является (Δωо) сила Кориолиса определится также следующим выражением:

Fк = m * rрад* εрад (4.2.4)

Как видно выражение (4.2.3), (4.2.4) отличаются от привычной традиционной формулы для силы Кориолиса. В них отсутствует множитель «2», а также радиальная скорость относительного движения и угловая скорость переносного вращения. Зато присутствует радиус, который нельзя дифференцировать по времени, т.к. по физическому смыслу динамики вращательного движения это величина постоянная.

С учётом меры вращения (rо) выражение (4.2.3) и (4.2.4) можно переписать в символах динамики Ньютона:

= (m * rрад * Δωрад) / Δt = (m * rрад * Δω* r / rрад) / Δt =

= m * Δω *r / Δt = m * ΔV/ Δt = m * ак (4.2.3*)

или

= m * rрад* εрад = m * rрад * ε * r / rрад = m * ε * r =

= m * ак (4.2.4*)

Поскольку мы фактически вели расчёт по приращению линейной скорости переносного вращения, то совершенно очевидно, что ускорение Кориолиса (ак) определяет только приращение линейной скорости по абсолютной величине. Об этом же свидетельствует и мерная вращательная динамика (см. выражения (4.2.3*) и (4.2.4*)). Никакого центростремительного ускорения по вращению радиальной скорости в его составе нет. Приращение угловой скорости во вращательном движении с постоянным радиусом свидетельствует о приращении только линейной скорости вращения.

Таким образом, предложенный подход к динамике вращательного движения через меру вращения – образцовый радиан, имеющий размерность один метр вращения [мрад], позволяет установить истинный смысл явления Кориолиса, который в классической физике настолько глубоко спрятан в различных абстракциях в виде всяческих моментов, что вот уже более 200 лет его никто не может отыскать.

Для того чтобы иметь возможность сравнивать величину ускорения Кориолиса, полученного с помощью размерного образцового радиана с классическим ускорением Кориолиса необходимо привести полученные нами выражения к традиционному классическому виду с использованием соотношений второго закона Кеплера 1 / ω2 = r22 / r12).

В традиционной формуле ускорение Кориолиса, как известно, определяется через угловую скорость переносного вращения и радиальную скорость относительного движения. Для приведения полученных выражений к традиционному виду преобразуем выражение (4.2.1) следующим образом:

Δωрад = ω2рад – ω1рад = ω1 * r2 / rрад – ω2 * r2 / rрад =

= (ω1 * r2 – ω2 * r2) / rрад (4.2.5)

Выразим (ω2) через (ω1) в соответствии со вторым законом Кеплера 1 / ω2 = r22 / r12):

ω2 = ω1 * r12 / r22

Подставим полученное выражение для (ω2) в (4.2.5):

Δωрад = (ω1 * r22 – ω1 * r12) / (r2 * rрад) = ω1 * (r22 – r12) / (r2 * rрад)

Примем во внимание, что:

r1 = Vr * t

r2 = Vr * (t + Δt)

ω1 = ω

тогда:

Δωрад = Vr2 * ω * (2 * t * Δt + Δt2) / (Vr * (t + Δt) * rрад)

Подставим полученное выражение в (4.2.3):

Fк = (m * rрад* Δωрад) / Δt =

= (m * rрад* Vr2 * ω * (2 * t * Δt + Δt2) / (Vr * (t + Δt) * rрад)) / Δt

Сократим полученное выражение для силы Кориолиса на (Vr * rрад):

Fк = (m * Vr * ω * (2 * t * Δt + Δt2) / (t + Δt)) / Δt

Преобразуем полученное выражение следующим образом:

Fк = (m * Vr * ω * 2 * Δt * (t + Δt / 2) / (t + Δt)) /Δt

После сокращения на (Δt) получим:

Fк = 2 * m * Vr * ω * (t + Δt / 2) / (t + Δt)

Для малых значений (Δt) в некотором приближении можно допустить:

t + Δt / 2 ≈ t + Δt

Тогда после сокращения выражение для полной силы Кориолиса примет вид:

Fк ≈ 2* m * Vr * ω * (t + Δt / 2) / (t + Δt) 

≈ 2 * m * Vr * ω (4.2.6)

Мы произвели расчёт в полном диапазоне изменения угловой скорости (Δωрад = ω2 рад – ω1рад), искусственно дождавшись пока истинная сила Кориолиса-Кеплера изменит линейную скорость от (Vлн = ω1 * r1) до (Vли = ω2 * r2). А затем определили закручивающую силу, восстанавливающую начальную линейную скорость (Vлн = ω1 * r1). По-другому определить непроявленные движения просто невозможно. Для того чтобы определить параметры отсутствующего в реальной действительности движения необходимо сначала дать ему проявиться, хотя бы мысленно, что мы и сделали выше. В реальной действительности этого движения нет, т.к. его компенсирует часть поддерживающей силы. При этом образующееся статическое напряжение в составе классической силы Кориолиса естественно не влияет на динамику поворотного движения (см. гл. 4.3.).

Тем не менее, эта статическая часть и приводит к удвоению классической силы Кориолиса, которое в классической физике связывают с центростремительным ускорением вращения вектора радиальной скорости наверное именно потому, что центростремительное ускорение в классической физике не имеет линейного приращения движения. Этот факт хорошо согласуется с классическим значением ускорения Кориолиса, полученным с помощью классической лже динамики вращательного движения. Но в главе (4.1.) показано, что в составе ускорения Кориолиса центростремительного ускорения как такового нет.

Приведённый выше вывод основан на реальной структуре реальных и потенциальных (мысленных) приращений поворотного движения, из которой следует, что силовое напряжение Кориолиса состоит из двух составляющих. Это статическая поддерживающая сила, которая не вызывает геометрического ускорения, т.к. ей противостоит истинная сила Кориолиса и динамическая поддерживающая сила, которая и обеспечивает реальное геометрическое ускорение Кориолиса. Это можно подтвердить, определив значения всех составляющих поддерживающей силы, на основе мерной динамики вращательного движения.

Итак, определим динамическую составляющую поддерживающей силы, реакция на которую и есть классическая сила Кориолиса. Как показано выше динамическая составляющая силы Кориолиса (Fкд→) обеспечивает реальное изменение линейной скорости в диапазоне (Vлн = ω1*r1) → (Vлд = ω1* r2). Граничные угловые скорости приведённого вращения (ω1рад) и (ω2рад) для этих линейных скоростей равны:

ω1рад = ω1 * r1 / rрад

ω2рад = ω1 * r2 / rрад

Тогда:

Δωрад = ω1 * r2 / rрад– ω1 * r1 / rрад

Для простоты подстрочный индекс для динамической силы Кориолиса (Д) опущен.

Подставив приращение угловой скорости поворотного движения для динамической силы Кориолиса в (4.2.3) получим выражение для динамической силы Кориолиса:

Fк = m * rрад * (ω1 * r2 / rрад – ω1 * r1 / rрад) / Δt (4.2.7)

Теперь приведём выражение (4.2.7) к традиционному виду аналогично приведению к традиционному виду полной силы Кориолиса (см. выше).

Выразим граничные радиусы через радиальную скорость:

r1 = Vr * t

r2 = Vr * (t + Δt)

тогда:

Δωрад = ω1 * r2 / rрад – ω1 * r1 / rрад = ω1 * Vr * (t + Δt – t) / rрад =

= ω1 * Vr * Δt / rрад

Поскольку

ω1 = ω,

то выражение для приращения угловой скорости примет вид:

Δωрад = ω * Vr *Δt / rрад

После подстановки найденного приращения угловой скорости (Δωрад) в выражение (4.2.3) и сокращений получим физическое значение динамической силы Кориолиса:

Fпд = m * rрад * ω * Vr * Δt / rрад* Δt = m * Vr * ω (4.2.8)

Как видно из полученного выражения, динамическая поддерживающая сила (4.2.8) сообщает геометрическое, т.е. реальное приращение классическому поворотному движению с неизменной угловой скоростью вдвое меньшее, чем классическое ускорение Кориолиса.

Теперь найдём физическое значение статической составляющей поддерживающей силы, которая компенсирует истинную силу Кориолиса в диапазоне изменения линейной скорости от (Vли = ω2 * r2) до (Vлн = ω1 * r1). Для определения граничных угловых скоростей приведённого вращательного движения для статической составляющей силы Кориолиса разделим граничные линейные скорости (Vли = ω2* r2) и (Vлн = ω1* r1), на радиус образцового вращательного движения.

ω1рад = ω2 * r2 / rрад

ω2рад = ω1 * r1 / rрад

Индекс статической составляющей (с) для простоты опущен.

Приращение угловых скоростей образцового вращательного движения равно:

Δωрад = ω1 * r1 / rрад – ω2 * r2 / rрад

Подставив в (4.2.3) приращение угловой скорости поворотного движения для статической силы Кориолиса, пересчитанное к образцовому радиану, получим выражение для статической силы Кориолиса:

Fк = m * rрад * (ω1 * r1 / rрад– ω2 * r1 / rрад) / Δt (4.2.9)

Теперь приведём выражение (4.2.9) к традиционному виду. Для этого преобразуем приращение угловой скорости с учетом закона сохранения момента импульса или второго закона Кеплера (ω2 = ω1 * r12 / r22) следующим образом:

Δωрад = ω1 * r1 / rрад– ω2 * r2 / rрад =

= ω1 * r1 / rрад – r2 * ω1 * r12 / (r22 * rрад) = ω1 * r1 / rрад – ω1 * r12 / (r2 * rрад) =

= ω1 * (r1 * r– r12) / (r2 * rрад) = ω1 * r1 * (r– r1) / (r2* rрад)

Но:

r– r1 = Δr = Vr * Δt

Тогда

Δωрад = ω1 * r1 * Vr * Δt / (r2 * rрад)

Выразим радиусы (r1) и (r2) через радиальную скорость и учтём, что (ω1 = ω):

r1 = Vr * t

r2 = Vr * (t + Δt)

ω1 = ω

Тогда

Δωрад = ω * Vr2 * t * Δt / (rрад * Vr * (t + Δt)) =

= ω * Vr * t * Δt / (rрад * (t + Δt))

При малом (Δt):

t + Δt ≈ t

Тогда:

Δωрад ω * Vr * Δt / rрад (4.2.10)

Подставим (4.2.10) в (4.2.9):

Fкс ≈ m * rэ * ω * Vr * Δt / rэ * Δt ≈ m * Vr * ω (4.2.11)

Расчёт истинной силы Кориолиса полностью аналогичен расчёту статической силы Кориолиса, причем, в том же самом диапазоне изменения угловой и линейной скоростей. Естественно, что аналогичным будет и результат расчёта истинной силы Кориолиса. Поэтому мы не будет его приводить подробно, а лишь напомним, что истинная сила Кориолиса направлена противоположно поддерживающей силе, следовательно, она полностью компенсирует статическую составляющую поддерживающей силы.

Таким образом, мы подтвердили нашу версию явления Кориолиса строгим математическим расчётом.

В точности соответствует половине классической силы Кориолиса только динамическая составляющая полного силового напряжения Кориолиса в нашей версии. При приведении значений полной, статической и истинной силы Кориолиса к классическому виду мы использовали условные допущения в малом интервале времени (t + Δt / 2 ≈ t + Δt), (t + Δt ≈ t) и (t + Δt ≈ t) соответственно. Это связано с приведением угловой скорости (ω2) к исходной угловой скорости (ω1 = ω), которое применяется во всех случаях, кроме динамической составляющей.

Физическая причина этого несоответствия на наш взгляд состоит в том, что теоретическое соотношение (V1 * r1 = V2 * r2) выполняется для проекций линейной скорости спирали во время поворотного движения. В реальной действительности это соотношение выполняется только для установившихся вращений до и после поворотного движения. Об этом свидетельствует вывод соотношений второго закона Кеплера, приведённый в главе (3.4.3.).

1
...
...
10