Читать книгу «Чернобыль. История катастрофы» онлайн полностью📖 — Adam Higginbotham — MyBook.

Добиться успеха Курчатову помогли наличие нескольких глубоко внедрившихся в американский атомный проект советских шпионов и информация, содержавшаяся в изданной правительством США в 1945 году и успешно расходившейся книге «Атомная энергия для военных целей» (Atomic Energy for Military Purposes), которую тут же перевели в Москве[136]. Ядерные исследования были возложены на вновь сформированное Первое главное управление при СНК СССР и «атомное политбюро»[137] под надзором подручного Сталина Лаврентия Берии, возглавлявшего Народный комиссариат внутренних дел, предшественник КГБ[138]. С самого начала советский ядерный проект развивался в условиях жестокой спешки и параноидальной секретности. К 1950 году в распоряжении Первого главного управления находились 700 000 человек, более половины из них заключенные, включая 50 000 военнопленных, работавших в том числе на урановых рудниках[139]. Когда сроки заключения этих мужчин и женщин подошли к концу, их посадили в товарные вагоны и отправили в ссылку на Крайнем Севере, чтобы они не смогли никому рассказать, чему стали свидетелями. Многих никогда больше не видели. Когда команда Курчатова добилась успеха, Берия вознаградил их – в той же пропорции, которую предназначал им в случае неудачи[140]. Те, кого он приказал бы расстрелять немедленно, – Курчатов и Николай Доллежаль, автор проекта реактора «Аннушка», – вместо этого были удостоены звания Героя Социалистического Труда, дач, персональных автомобилей и денежных премий. Те же, кого ждали максимальные тюремные сроки, вместо этого получили вторую по значимости награду – ордена Ленина.

К тому времени как «Изделие» было испытано, Курчатов решил создать реактор для выработки электричества. В 1950 году во вновь построенном закрытом городе Обнинске в двух часах езды на юго-запад от Москвы та же группа, которая построила «Аннушку», принялась за работу над новым реактором, предназначенным для превращения воды в пар и вращения турбины. Ресурсов не хватало, и некоторые участники ядерной программы считали, что от энергетического реактора не будет практической пользы. Берия дал разрешение на этот проект исключительно благодаря заслугам Курчатова как отца бомбы[141]. И только в конце 1952 года власть признала перспективность ядерной энергетики, сформировав для создания реакторов Научно-исследовательский и конструкторский институт энергетических технологий (НИКИЭТ)[142].

На следующий год СССР испытал первое термоядерное устройство – в тысячу раз более разрушительную, чем атомная, водородную бомбу. Теперь в мире появились две ядерные сверхдержавы – США и СССР, теоретически способные уничтожить человечество[143]. Даже Курчатов был потрясен мощью нового оружия, которое превращало поверхностный слой земли в стекло в радиусе 5 км от эпицентра взрыва[144]. Не прошло и четырех месяцев, как президент США Дуайт Эйзенхауэр выступил с речью «Атомы для мира» перед Генеральной Ассамблеей ООН. Отчасти это была попытка успокоить американское общество, перед которым открылась перспектива апокалипсиса[145]. Эйзенхауэр призвал страны к глобальному сотрудничеству, чтобы сдержать начинающуюся гонку вооружений и направить силу атома на благо человечества. Он предложил созвать международную конференцию для рассмотрения этих вопросов. Никто особенно не удивился, когда СССР публично отверг эту идею, объявив ее пустой пропагандой[146].

Однако в августе 1955 года Международная конференция ООН по мирному использованию атомной энергии все же собралась в Женеве, и советская делегация туда прибыла. Это был первый случай за 20 лет, когда советским ученым было разрешено общаться с иностранными коллегами, и они нанесли свой пропагандистский удар[147]. Было объявлено, что 27 июня прошедшего года в СССР к московской энергосети успешно подключили обнинский реактор АМ-1.

Первый в мире ядерный реактор, вырабатывавший электричество в гражданских целях, в СССР окрестили «Атомом Мирным-1» (АМ-1). До пуска первой американской АЭС в Шиппингпорте, штат Пенсильвания, оставалось два года. Расположенный в причудливом здании с высокой трубой, напоминавшем шоколадную фабрику, АМ-1 давал всего 5 мегаватт энергии. Этого хватило бы от силы для того, чтобы привести в движение локомотив, однако обнинский реактор символизировал способность социалистической системы поставить ядерную энергию на благо человечества[148]. Рождение советской ядерной энергетики положило начало новому противостоянию – технологической холодной войне между сверхдержавами.

Вскоре после смерти Сталина в 1953 году Берия был арестован, заключен в тюрьму и расстрелян[149]. Первое главное управление переформировали и переименовали[150]. Теперь вопросами атомной энергии – от добычи урана до испытаний бомб – занималось Министерство среднего машиностроения, сокращенно Минсредмаш или просто Средмаш. Новый премьер Никита Хрущев положил конец эпохе сталинских репрессий, либеральнее относился к искусствам, поддерживал развитие высоких технологий и обещал к 1980 году построить в СССР коммунизм – утопию вроде Шангри-Ла[151], гарантирующую трудящимся равенство и изобилие[152]. Чтобы модернизировать экономику и крепче удерживать власть, Хрущев выступал за освоение космоса и развитие ядерных технологий.

В успехе АМ-1 советские физики и их партийные боссы увидели панацею, которая, наконец, поможет СССР освободиться от ограничений прошлого и продвинуться в светлое будущее[153]. Людям, все еще восстанавливавшим разрушенную войной страну, обнинский реактор наглядно демонстрировал, что СССР может быть мировым технологическим лидером в интересах обычных граждан, принося свет и тепло в их дома. Физики, работавшие на АМ-1, получили Ленинскую премию, энергию атома воспевали в журнальных статьях, фильмах и радиопередачах, в школах детям рассказывали об основах ядерной энергетики и о мирных целях советской ядерной программы в отличие от милитаристских устремлений США[154]. По словам историка Пола Джозефсона, ученые-ядерщики стали «почти мифологическими фигурами в пантеоне советских героев» – наряду с космонавтами и павшими героями Великой Отечественной войны[155].

Однако маленький реактор в Обнинске был не тем, чем казался на первый взгляд[156]. Его конструктивные особенности были заточены не на выработку электричества, а для быстрого и дешевого производства оружейного плутония. Реактор начинала строить та же команда Минсредмаша, которая создала «Аннушку», но коррозия материалов, утечки радиации и ненадежность инструментов помешали им завершить задачу. В основу АМ легли технологии, разработанные для атомных подводных лодок, и только когда идея была сочтена непрактичной, кодовое название АМ – «Атом Морской» – заменили на более невинное[157].

Родовой особенностью этого реактора была нестабильность работы[158].

В ядерном оружии огромное число ядер атомов урана распадается в доли секунды, высвобождая всю свою энергию в разрушительной вспышке огня и света. В реакторе процесс деления должен быть управляемым и осторожно поддерживаемым в течение недель, месяцев и даже лет. Для этого требуются три компонента: замедлитель, стержни управления и охладитель.

Простейшая форма ядерного реактора не требует никакого оборудования вообще. Если имеется нужное количество урана-235 в присутствии замедлителя нейтронов – воды или графита, начинается самоподдерживающаяся цепная реакция с выделением ядерной энергии в виде тепла. Некогда комбинация обстоятельств, необходимых для такого события, – критичность – спонтанно возникла на территории современного государства Габон, в древних подземных залежах урана, где замедлителем служили грунтовые воды[159]. Там самоподдерживающаяся цепная реакция началась 2 млрд лет назад, производя небольшие количества тепловой энергии – в среднем около 100 киловатт (достаточно, чтобы зажечь 1000 стоваттных лампочек), и безостановочно продолжалась миллион лет, пока вода не выкипела от тепла распада.

Но для генерации энергии в ядерном реакторе поведение нейтронов необходимо контролировать, чтобы обеспечить постоянство реакции и использовать тепловую энергию деления для получения электричества. В идеале каждая отдельная реакция деления должна запускать лишь одно следующее деление в соседнем атоме, так что каждое последующее поколение нейтронов должно содержать то же самое их число, что и поколение до него, и реактор должен оставаться в том же критическом состоянии.

Если каждое деление не создает столько же нейтронов, как предыдущее, реактор переходит в субкритическое состояние, цепная реакция ослабевает и со временем останавливается, реактор «глохнет». Если же каждое поколение нейтронов приносит более одного деления, цепная реакция может начать расти слишком быстро – к потенциально неуправляемой сверхкритичности и внезапному значительному выбросу энергии, как это происходит в ядерном оружии. Поддержание стабильного состояния между этими двумя крайностями – тонкая задача. Первым инженерам-ядерщикам пришлось создать инструменты для овладения силами, опасно близкими к пределам человеческих возможностей управления.

Масштаб субатомной активности внутри ядерного реактора, микроскопической и невидимой, трудно воспринять: генерация электрической мощности в 1 ватт требует деления 30 млрд ядер атомов в секунду[160]. Около 99 % нейтронов, выбрасываемых при одном событии деления, являются частицами высокой энергии – «быстрыми» нейтронами, вылетающими со скоростью 20 000 км/с. Быстрые нейтроны ударяют своих соседей и вызывают последующее деление, продолжая цепную реакцию в среднем в течение всего 10 наносекунд. Этот отрезок времени остроумцы американского Манхэттенского проекта измеряли в «шейках»[161] от английского выражения «two shakes of a lamb’s tail», «два дрожания хвоста ягненка». Он слишком краток, чтобы в течение него можно было управлять какими-либо механическими средствами[162]. К счастью, среди оставшегося 1 % нейтронов, высвобождаемых каждым распадом, есть меньшинство, испускаемое в более доступных человеку временны́х рамках, которые измеряются секундами или даже минутами[163]. Существование этих запаздывающих нейтронов, появляющихся достаточно медленно, чтобы ими мог управлять человек, и делает возможной работу ядерного реактора.

Плавно управлять нарастанием цепной реакции позволяют электромеханические стержни, содержащие такие поглощающие нейтроны элементы, как борид кадмия или карбид бора. Они действуют как «атомные губки», впитывая и удерживая запаздывающие нейтроны, предотвращая запуск дальнейшего деления[164]. Когда стержни вставлены в реактор полностью, активная зона реактора остается в субкритическом состоянии. По мере их вытаскивания деление медленно нарастает, пока реактор не становится критическим – затем он может быть оставлен в этом состоянии и регулироваться по необходимости. Вытаскивание стержней выше или в большем числе увеличивает реактивность и количество вырабатываемого тепла и энергии, введение дает противоположный эффект. Но работа с реактором с использованием только этой части в менее чем 1 % всех нейтронов деления делает процесс управления очень чувствительным: если стержни выдвигаются слишком быстро, слишком далеко – или не срабатывает одна из нескольких защитных систем, – реактор может захлебнуться от делений и его состояние станет «надкритическим». Результатом будет авария, катастрофический сценарий, при котором случайно запускается процесс, схожий с тем, что происходит в атомной бомбе, и неконтролируемый выброс энергии нарастает, пока активная зона реактора не расплавится – или не взорвется.

Для выработки электричества урановое топливо внутри реактора должно разогреться достаточно для того, чтобы превращать воду в пар, но не настолько, чтобы само топливо начало плавиться[165]. Для этого, помимо стержней управления и нейтронного замедлителя, нужен охладитель для отвода избыточного тепла из реактора. Первые реакторы, построенные в Великобритании, использовали графит в качестве замедлителя и воздух как охладитель; позднее коммерческие американские модели использовали кипящую воду и как замедлитель, и как охладитель. У обоих конструкций имелись выраженные риски и преимущества. Вода не горит, но превращение ее в пар под давлением может вызвать взрыв. Графит не взрывается, но загорается при высоких температурах. Первые советские реакторы, скопированные с образцов Манхэттенского проекта, использовали и графит, и воду[166]. Это была рискованная комбинация: замедлитель, который при высоких температурах яростно горит (графит), и взрывоопасный охладитель (вода)[167].

Три соревнующиеся между собой команды физиков дали начальные предложения для того, что стало затем реактором АМ-1[168]. Первая предложила разрабатывать водно-графитовый вариант, вторая – использовать графит как замедлитель и гелий как охладитель, третья – попробовать в качестве замедлителя берилл. У советских инженеров, занимавшихся установками по производству плутония, было больше опыта в работе с водно-графитовыми реакторами[169]. Кроме того, последние были дешевле и проще в строительстве. Поэтому у менее разработанных (и потенциально более безопасных) решений просто не было шансов[170].

Только на поздних этапах строительства АМ-1 физики в Обнинске обнаружили рискованное место проекта: протечка охлаждающей воды на горячий графит могла привести не только к взрыву и радиоактивному выбросу, но и к аварии реактора[171]. Запуск АМ-1 неоднократно откладывали, разрабатывая системы безопасности, способные решить эту проблему. Но, когда в июне 1954 года АМ-1 вышел наконец на критический режим, оставался еще один принципиальный недостаток, который так и не устранили: феномен, известный как положительный паровой (пустотный) коэффициент реактивности.

При нормальной работе все охлаждаемые водой водно-графитовые ядерные реакторы содержат некоторое количество пара, циркулирующего в активной зоне и образующего в жидкости пузыри или «пустоты»[172]. Вода более эффективно замедляет нейтроны, чем пар, поэтому число пузырьков пара в воде влияет на реактивность активной зоны. В водо-водяных реакторах, где вода используется и как замедлитель, и как охладитель, по мере нарастания объема пара замедляется меньше нейтронов и реактивность падает. Если пара образуется слишком много (или если охладитель вытекает полностью), цепная реакция останавливается и реактор глохнет. Отрицательный паровой коэффициент срабатывает как автоматический размыкатель, «рукоятка мертвеца»[173], важное условие безопасности водо-водяных реакторов, распространенных на Западе[174].

Но в водно-графитовых реакторах, каковым был АМ-1, все происходит противоположным образом. По мере разогрева реактора и превращения все большего количества воды в пар графитный замедлитель продолжает выполнять свою функцию, как и ранее. Цепная реакция продолжает нарастать, вода нагревается сильнее, и еще большее ее количество становится паром. Пар, в свою очередь, поглощает меньше и меньше нейтронов, и цепная реакция продолжает ускоряться в петле обратной связи растущей мощности и температуры. Чтобы остановить или замедлить процесс, операторы должны вдвигать управляющие стержни. Если они по какой-либо причине откажут, реактор станет неуправляемым, расплавится или взорвется. Этот положительный паровой коэффициент[175] оставался фатальным свойством реактора АМ-1 и угрозой для работы каждого последующего советского водно-графитового реактора.

20 февраля 1956 года Игорь Курчатов впервые появился перед публикой. Более десяти лет, с 1942 года, отец советской атомной бомбы был окружен завесой государственной тайны, работая в засекреченных лабораториях Москвы и Обнинска и на полигонах в Казахстане. Теперь он стоял перед делегатами XX съезда КПСС в Москве и рассказывал о фантастических перспективах СССР, который получит ядерную энергию[176]