Почти все во Вселенной состоит из атомов – образующих ее вещество частиц звездной пыли. Атомы в миллион раз меньше толщины человеческого волоса и состоят почти полностью из пустоты. Но в центре каждого атома есть ядро – полное латентной энергии и невообразимо плотное, словно 6 млрд автомобилей спрессовали до размеров чемодана[104]. Вокруг ядра движется облако электронов, а само оно состоит из нейтронов и протонов, удерживаемых вместе силой, которую называют сильным взаимодействием[105].
Сильное взаимодействие, наравне с гравитацией, одна из четырех основных сил, которые удерживают Вселенную. Прежде ученые считали, что его мощь делает атомы неделимыми и неуничтожимыми и что «ни масса, ни энергия не могут быть созданы или уничтожены»[106]. В 1905 году Альберт Эйнштейн перевернул эти представления[107]. Он предположил, что, если бы атомные ядра удалось каким-либо образом разорвать, это преобразовало бы их крошечную массу в относительно огромный выброс энергии. В виде уравнения эта идея выглядит так: высвобождаемая энергия будет равна потерянной массе, умноженной на квадрат скорости света. E = mc2.
В 1938 году трио ученых из Германии обнаружило, что при бомбардировке атомов тяжелого металла урана нейтронами ядра этих атомов фактически могут делиться – с высвобождением ядерной энергии. При делении некоторые нейтроны вылетают на огромной скорости, сталкиваясь с ближайшими ядрами и, в свою очередь, делят их, высвобождая еще больше энергии. Если собрать достаточное количество атомов урана в правильной конфигурации, достигнув критической массы, процесс станет поддерживать себя сам, нейтроны одного разделившегося ядра будут раскалывать ядро другого, посылая новые нейтроны на столкновение со следующими ядрами. По достижении критического порога результирующая цепная реакция – ядерное деление – высвободит невообразимые количества энергии.
6 августа 1945 года в 8:16 ядерный заряд, содержащий 64 кг урана, взорвался на высоте 580 м над японским городом Хиросима, с безжалостной точностью подтвердив уравнение Эйнштейна[108]. Сама по себе эта бомба была крайне неэффективной: распаду подвергся всего один килограмм урана, а в энергию превратились только 700 мг массы – столько весит бабочка[109]. Но этого было достаточно, чтобы за долю секунды полностью уничтожить город. Около 78 000 человек погибли в момент взрыва или сразу после него – были испарены, раздавлены или сожжены в огненной буре, прошедшей за взрывной волной[110]. К концу года еще 25 000 мужчин, женщин и детей заболели и умерли от воздействия радиации, высвобожденной первым в мире взрывом атомной бомбы в ходе военных действий.
Радиация – следствие распада нестабильных атомов. Ядра атомов различных элементов различаются по весу, определяемому числом протонов и нейтронов[111]. У каждого элемента уникальное число протонов, оно никогда не меняется, определяя «атомный номер» и положение элемента в периодической таблице: водород никогда не имеет больше одного протона, у кислорода их всегда восемь, у золота – 79. Но атомы одного и того же элемента могут иметь переменное число нейтронов, что дает различные изотопы: от дейтерия («тяжелый» водород – с одним нейтроном вместо двух) до урана-235 (металл уран с пятью добавочными нейтронами).
Добавление или удаление нейтронов из ядра стабильного атома превращает его в нестабильный изотоп[112]. Такой изотоп будет стремиться к восстановлению равновесия, отбрасывая части своего ядра в поисках стабильности – производя либо другой изотоп, либо иногда совсем другой элемент. Например, плутоний-239 отбрасывает два протона и два нейтрона из своего ядра, становясь ураном-235. Этот динамический процесс ядерного распада и есть радиоактивность, а высвобождаемая при этом энергия, которую ядра излучают в форме волн или частиц, – радиация.
Радиация окружает нас всегда и повсюду[113]. Она исходит от Солнца, и ее несут космические лучи, погружая города на большей высоте в фоновую радиацию более высоких уровней, чем в городах на уровне моря. Подземные залежи тория и урана испускают радиацию, как и каменные строения: камень, кирпич и штукатурка содержат радиоизотопы. Гранит, из которого построено здание Капитолия в США, настолько радиоактивен, что нарушает многие нормативы, установленные для атомных электростанций. Все живые ткани в той или иной степени радиоактивны: люди, как и бананы, излучают радиацию, поскольку и те и другие содержат небольшие количества радиоизотопа калия-40. В мышцах его больше, чем в других тканях, поэтому мужчины в целом радиоактивнее женщин. Бразильские орехи, содержащие радий в концентрации в тысячу раз выше, чем любой другой органический продукт, являются самой радиоактивной пищей в мире.
Радиация невидима и не имеет вкуса или запаха. Нам еще предстоит доказать, что до некоего уровня воздействие радиации полностью безопасно, однако она становится стопроцентно опасной, когда излучаемые частицы и волны обладают достаточной энергией, чтобы ионизировать (нарушить оболочку из электронов и превратить в заряженные ионы) атомы, составляющие ткани живых организмов. Такая радиация называется ионизирующим излучением.
Известны три основные формы ионизирующего излучения: альфа-частицы, бета-частицы и гамма-лучи. Альфа-частицы относительно крупные, они движутся медленно и не могут проникнуть через кожу; даже лист бумаги блокирует их движение. Но если им удается проникнуть в тело другими способами – если их проглотить или вдохнуть, – альфа-частицы могут вызвать тяжелое повреждение хромосом и смерть. Радон-222, скапливающийся в виде газа в непроветриваемых подвалах, заносит альфа-частицы в легкие, где они вызывают рак[114]. Мощным источником альфа-излучения является один из канцерогенов, содержащихся в табачном дыме, – полоний-210[115]. Этот яд, подсыпанный в чашку чая, убил в 2006 году в Лондоне бывшего офицера ФСБ Александра Литвиненко[116].
Бета-частицы меньше и движутся быстрее альфа-частиц, они могут проникать глубже в живые ткани, вызывая видимые ожоги кожи и длительные генетические повреждения. Лист бумаги не защищает от бета-частиц, а вот алюминиевая фольга – или достаточное расстояние – защитят. На расстоянии свыше 3 м бета-частицы не наносят ущерба, но они опасны, если попадут внутрь организма. Организм ошибочно принимает их за базовые элементы, и бета-излучающие радиоизотопы могут достигать смертельной концентрации в отдельных органах: стронций-90, относящийся к той же химической группе, что и кальций, накапливается в костях, рутений всасывается кишечником, йод-131 откладывается в щитовидной железе у детей и может вызвать рак.
Гамма-лучи – высокочастотные электромагнитные волны, распространяющиеся со скоростью света – имеют наибольшую энергию из всех форм ионизирующего излучения[117]. Они преодолевают большие расстояния, выводят из строя электронные приборы, задержать их могут только толстые слои вещества – бетона или свинца. Гамма-лучи беспрепятственно проходят через человеческое тело, пробивая клетки как микроскопические пули.
Если организм подвергается значительному ионизирующему излучению, это вызывает острую лучевую болезнь (ОЛБ), при которой ткани человеческого тела повреждаются и разрушаются на мельчайших уровнях[118]. Симптомы лучевой болезни включают тошноту, рвоту, кровотечения и выпадение волос, после чего происходит разрушение иммунной системы и костного мозга, распад внутренних органов и, наконец, смерть.
У пионеров атомных исследований, которые изучали «лучистую материю» в конце XIX века, воздействие радиации вызывало живое любопытство[119]. Вильгельм Рентген, открывший Х-лучи в 1895 году, был чрезвычайно заинтригован, увидев проекцию костей своей руки на стене лаборатории. Вскоре он сделал первую в мире фотографию в Х-лучах, сняв руку своей жены – вместе с обручальным кольцом, – и результат привел ее в ужас. «Я увидела свою смерть!» – сказала она[120]. Позже Рентген начал предпринимать меры, чтобы защитить себя от воздействия своего открытия, другие исследователи не были столь осторожны. В 1896 году Эдисон изобрел флуороскоп, прибор, который проецировал Х-лучи на экран, позволяя заглянуть внутрь предметов[121]. Во время этих опытов ассистент Эдисона многократно подставлял руки под Х-лучи. Когда на одной руке появились ожоги, ассистент стал подставлять другую. Однако ожоги не заживали. Со временем хирурги ампутировали ему левую руку и четыре пальца на правой. Когда рак распространился на всю правую руку, доктора отрезали и ее. Болезнь переместилась на грудь, и в октябре 1904 года он умер, став первой жертвой искусственной радиоактивности.
Даже когда стал очевиден вред от поверхностного воздействия радиации, опасность облучения внутренних тканей осознавали плохо[122]. В начале ХХ столетия аптекари продавали средства, содержащие радий в качестве тонизирующего, и люди их пили, веря, что радиоактивность передает энергию. В 1903 году Мария и Пьер Кюри получили Нобелевскую премию за открытие полония и радия – источника альфа-частиц, примерно в миллион раз более радиоактивного, чем уран. Эти вещества они извлекали из тонн вязкой, смолистой руды в своей парижской лаборатории[123]. Пьер Кюри погиб под колесами экипажа, когда переходил улицу, а его вдова продолжила исследовать свойства радиоактивных веществ – до самой своей смерти в 1934 году, вероятно в результате радиоактивного поражения костного мозга. Более чем 80 лет спустя записи, которые велись в лаборатории Кюри, оставались настолько радиоактивными, что их хранили в выложенной свинцом коробке.
Если смешивать радий с другими элементами, они светятся в темноте. Когда это стало известно, часовщики начали нанимать молодых женщин для нанесения флуоресцентных меток на циферблаты[124]. На часовых фабриках в Нью-Джерси, Коннектикуте и Иллинойсе этих «радиевых девушек» учили облизывать кончик кисточки, прежде чем опустить ее в горшочек с радиевой краской. Когда челюсти и скелетные кости девушек стали гнить и распадаться, работодатели заявили, что они больны сифилисом. Однако начатый судебный процесс показал, что менеджеры знали о рисках работы с радием и скрывали это от работниц[125]. Так публика впервые узнала об опасностях попадания радиоактивных материалов в организм.
Биологическое воздействие радиации на человеческое тело поначалу измеряли в бэрах (биологических эквивалентах рентгена), учитывая сложную комбинацию факторов: тип радиации, длительность облучения, сколько радиации проникло в тело и насколько облученные ткани уязвимы для радиации. Части тела, где клетки делятся быстро – костный мозг, кожа, желудочно-кишечный тракт, – больше подвержены рискам, чем сердце, печень и мозг. Некоторые радионуклиды, такие как радий и стронций, более интенсивно излучают радиацию и поэтому опаснее, чем, например, цезий или калий[126].
Выжившие в атомной бомбардировке жители Хиросимы и Нагасаки предоставили медикам первую возможность изучения острой лучевой болезни (ОЛБ) на большой выборке людей[127]. Все выжившие стали субъектами проекта, растянувшегося более чем на 70 лет и создавшего универсальную базу данных по долгосрочному воздействию ионизирующей радиации на человека. Из тех, кто пережил взрыв в Нагасаки, 35 000 человек умерли в ближайшие сутки; заболевшие ОЛБ потеряли волосы за одну-две недели, затем у них начался кровавый понос и они умерли от инфекции и лихорадки[128]. Еще 37 000 человек умерли в течение трех месяцев. Сравнимое число попавших под атомную бомбардировку прожило дольше, но спустя еще три года у них развилась лейкемия. К концу 1940-х годов эта болезнь станет первым видом рака, связанным с радиацией.
Воздействие ионизирующего излучения на неодушевленные предметы и на живых существ изучалось в конце 1950-х годов в ВВС США[129]. В рамках правительственной программы создания самолетов на атомной тяге компания Lockheed Aircraft построила 10-мегаваттный ядерный реактор с водяным охлаждением в подземной шахте в лесах Северной Джорджии. Нажатием кнопки реактор можно было поднять из защитного кожуха на уровень земли, подвергнув все в радиусе 300 м воздействию смертельной дозы радиации. В июне 1959 года этот реактор радиационного воздействия был выведен на полную мощность и впервые испытан, убив почти все живое в окрестностях объекта: насекомые падали в воздухе, мелкие животные и живущие на них и в них бактерии погибли (этот феномен назвали «моментальной таксидермией»). Воздействие на растения было различным: дубы пожухли, а трава-росичка странным образом не пострадала; больше всего досталось соснам. Изменения предметов, попавших в зону действия реактора, тоже казались загадочными: прозрачные бутылки с кока-колой стали коричневыми, приборы на транзисторах перестали работать, гидравлическая жидкость коагулировала до консистенции жевательной резинки, а резиновые шины стали твердыми как камень.
При этом, каким бы интенсивным ни было облучение человека ионизирующей радиацией, оно редко сопровождалось заметными ощущениями. Человек может купаться в гамма-лучах, способных убить его 100 раз, и ничего не ощущать при этом.
21 августа 1945 года, за две недели до того, как атомная бомба была сброшена США на Хиросиму, Гарри Даглян-младший, 24-летний физик, участвовавший в ядерном Манхэттенском проекте, проводил эксперимент на базе в Лос-Аламосе в штате Нью-Мексико[130]. Внезапно рука его дрогнула, и конструкция, которую он составил, – шар из плутония, окруженный брусками карбида вольфрама, – перешла в критическую фазу. Даглян увидел моментальную синюю вспышку и был поражен волной гамма-лучей и нейтронной радиации свыше 500 бэр. Он быстро разобрал установку и сразу обратился к врачам[131]. Те не отметили никаких видимых симптомов, но радиация убила ученого с той же неотвратимостью, как если бы он шагнул под поезд. Двадцать пять дней спустя Даглян впал в кому и уже из нее не вышел – первый человек в истории, случайно погибший от близкого воздействия реакции ядерного распада. Газета The New York Times назвала причиной смерти ожоги, полученные в результате «аварии на производстве»[132].
С самого начала ядерная энергетика стремилась выйти из тени своего военного прошлого. Первый ядерный реактор, собранный под трибунами заброшенного футбольного стадиона Университета Чикаго в 1942 году, стал наковальней Манхэттенского проекта, важнейшим первым этапом для наработки плутония-239. Этот делящийся материал требовался, чтобы выковать первое в мире атомное оружие. Последующие реакторы, построенные на полосе земли вдоль реки Колумбия в Хэнфорде, штат Вашингтон, были сооружены только для того, чтобы вырабатывать плутоний для атомных бомб растущего арсенала Соединенных Штатов. Военно-морские силы США выбрали конструкцию реактора, в дальнейшем использованную почти для всех гражданских энергетических станций в стране. Первая в США атомная станция для гражданских нужд была спроектирована по чертежам реактора для атомного авианосца.
СССР пошел по тому же пути. Первая советская атомная бомба – РДС-1, или «Изделие 501», как называли ее создатели, – была взорвана 29 августа 1949 года в казахстанских степях, на полигоне, расположенном в 140 км к северо-западу от Семипалатинска[133]. Советский атомный проект, получивший кодовое название «Программа номер один», возглавил 46-летний физик с бородой спиритиста Викторианской эпохи Игорь Курчатов, в котором кураторы из НКВД отмечали скрытность и политическую неоднозначность[134]. Первая советская бомба была точной копией бомбы «Толстяк» (Fat Man), за четыре года до того уничтожившей Нагасаки, и имела плутониевое ядро, произведенное на реакторе «А», или «Аннушка», построенном по образцу реакторов в Хэнфорде[135].
О проекте
О подписке