Сторонники информационного направления убеждены, что «важнее всего результат», т. е. хорошее совпадение поведения искусственно созданных и естественных интеллектуальных систем, а что касается внутренних механизмов формирования поведения, то разработчик искусственного интеллекта вовсе не должен копировать или даже учитывать особенности естественных, живых аналогов.
Информационное направление разделяется на три составляющие.
1.Эвристическое программирование – это разработка оригинальных методов, алгоритмов решения задач, подобных человеческим, а в некоторых случаях даже и лучших. Под эвристикой понимается правило, стратегия, метод или прием, используемые для повышения эффективности системы, которая пытается найти решения сложных задач. Эвристическая программа – это программа для компьютера, использующая эвристики.
Разработка машинных эвристических программ идет по двум основным направлениям:
а) создаются специализированные программы для решения относительно узких классов задач с использованием особенностей этих же классов;
б) программы второго направления претендуют на универсальное замещение человеческого интеллекта. Они чаще всего отождествляются с моделями мыслительного процесса.
Эвристические программы могут играть в шахматы, шашки, карточные игры, находить ответы на вопросы, находить решения из области математических исчислений; доказывать теоремы в математической логике и геометрии; способны обучаться на основе своего опыта; решать различные классы задач. Здесь исследователь воспроизводит в компьютере методы, используемые людьми, т.к. интеллект человека выше интеллекта компьютера. Структура программ решения интеллектуальных задач, предложенная Д. А. Поспеловым, представлена на рис. 3.3.
Рис. 3.3. Программы решения интеллектуальных задач
2.Системы, основанные на знаниях. Это направление в искусственном интеллекте образует его фундамент. Именно здесь создается теория данного научного направления, решаются основные проблемы, связанные с центральным объектом изучения искусственного интеллекта.
Структура знаний систем, основанных на знаниях, рис.3.4.
Рис. 3.4. Системы, основанные на знаниях.
Всякая предметная (проблемная) область деятельности может быть описана в виде некоторой совокупности сведений о структуре этой области, основных ее характеристиках, процессах, протекающих в ней, а также о способах решения возникающих в ней задач. При использовании интеллектуальных систем для решения задач в данной предметной области необходимо собрать о ней сведения и создать концептуальную модель этой области. Источниками знаний могут быть документы, статьи, книги, фотографии, киносъемка и многое другое. Из этих источников надо извлечь содержащиеся в них знания. Этот процесс может оказаться достаточно трудным, ибо надо заранее оценить важность тех или иных знаний для работы интеллектуальной системы.
В области извлечения знаний можно выделить два основных направления: формализация качественных знаний и интеграция знаний. Первое направление связано с созданием разнообразных методов, позволяющих переходить от знаний, выраженных в текстовой форме, к их аналогам, пригодным для ввода в память интеллектуальной системы. В связи с этой проблемой развивались не только традиционные методы обработки экспериментальных данных, но и совершенно новое направление, получившее название нечеткой математики.
Нечеткая математика и ее методы оказали существенное влияние на многие области искусственного интеллекта и, в частности, на весь комплекс проблем, связанных с представлением и переработкой качественной информации.
Когда инженер по знаниям получает знания из различных источников, он должен интегрировать их в некоторую взаимосвязанную и непротиворечивую систему знаний о предметной области. Знаний, содержащихся в источниках информации, отчужденных от специалиста, как правило, недостаточно. Значительная часть профессионального опыта остается вне этих источников, в головах профессионалов, не могущих словесно их выразить. Такие знания часто называют профессиональным умением или интуицией. Для того, чтобы приобрести такие знания, нужны специальные приемы и методы. Они используются в инструментальных системах по приобретению знаний, создание которых – одна из современных задач инженерии знаний.
Следующая большая проблема, изучаемая в искусственном интеллекте, – это представление знаний в памяти системы. Для этого разрабатываются разнообразные модели представления знаний. В настоящее время в интеллектуальных системах используются четыре основные модели знаний. Первая модель, возможно, наиболее близка к тому, как представляются знания в текстах на естественном языке. В ее основе лежит идея о том, что вся необходимая информация может быть описана как совокупность троек вида: (a R b), где a и b два объекта или понятия, а R – двоичное отношение между ними. Такая модель графически может представляться в виде сети, в которой вершинам соответствуют объекты или понятия, а дугам – отношения между ними. Дуги помечены именами соответствующих отношений. Такая модель носит название семантической сети.
3. Интеллектуальное программирование. Трудоемкость разработки интеллектуальных приложений зависит от использованного языка, инструментальных систем, парадигмы программирования, средств разработки ИИС и приобретения знаний, систем когнитивной графики, рис.3.5.
Рис. 3.5. Инструментальные средства интеллектуальных систем.
Особняком стоят языки для представления знаний. Это языки, ориентированные на фреймы KL-1, KRL, FRL или язык ПИЛОТ, ориентированный на модель знаний в виде продукций
Системы когнитивной графики одно из направлений в интеллектуальном программировании. Одна из центральных идей искусственного интеллекта – это идея о том, что суть самого феномена интеллекта состоит в совместной работе двух систем переработки информации: зрительной, создающей образную картину мира, и символической, способной к абстрактному мышлению, к оперированию с понятиями, интегрирующими образы внешнего мира.
Возможность перехода от зрительной картины к ее текстовому (символическому) описанию и от текста к некоторой зрительной картине, составляет, по-видимому, основу того, что называется мышлением. Мы пока еще точно не знаем о том, как хранятся зрительные образы в памяти человека, как они обрабатываются, как они соотносятся с текстами, им соответствующими. Когнитивная графика и занимается приемами соотнесения текстов и зрительных картин через общее представление знаний, интегрирующих текстовые и зрительные образы. Примерами являются программы оживления картин, но не на основе жестких процедур, а в соответствии с некоторыми текстами на ограниченном естественном языке.
Если интерактивная компьютерная графика (ИКГ) реализует две связанные между собой функции: иллюстративную и когнитивную, то одновременный вывод ИКГ-изображений в разные окна дисплея создает у пользователя синтетический полиоконный ИКГ-образ. Иллюстративная функция обеспечивает визуальную адекватность графического образа оригиналу, т. е. визуальную «узнаваемость» оригинала. Когнитивная функция позволяет (при определенных условиях) изображать в наглядной графической форме внутреннее содержание оригинала. Функциональное содержание ИКГ представлено на рис. 3.6.
Рис. 3.6. Функциональное содержание ИКГ.
Эвристические программы повышают "интеллектуальный уровень" машины. Однако программы создания системы "общего интеллекта", т. е. универсальной эвристической программы, не существует. Трудности и неудачи в решении данного вопроса в значительной степени связаны со следующим.
1.Не учитываются в полном объеме реальные гносеологические характеристики человеческого интеллекта, приоритет отдается только выбору. Методы гносеологии включают в себя анализ, сравнение, эксперимент, наблюдение и другие инструменты, которые помогают нам получить достоверные знания.
2.Символы в эвристических программах не имеют интерпретации, отсутствует и содержательно обусловленный выбор. Поэтому в памяти ЭВМ не представлены ни сложная внутренняя структура образа, ни сеть его отношений с другими образами.
3.Вновь поступающая информация не влияет на базу данных, вследствие чего она не используется в решении задачи.
4.Семантика, вложенная в машину, не многоярусная: формальные аналоги категорий не имеют аналогов чувственных образов;
5.Данные, вносимые сегодня в ЭВМ, не имеют базы "целей". В результате этого в совокупные ее функции не включены элементы целеполагания собственно информационных и деятельностных аспектов функционирования интеллектуальных систем.
. ТИПЫ СИСТЕМ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА
Технологии искусственного интеллекта можно условно разделить на две большие категории: ИИ на основе возможностей и ИИ на основе функциональности. Каждая из этих разновидностей, в свою очередь, делится на более специализированные подкатегории, рис. 4.1.
Рис. 4.1. Типы искусственного интеллекта
1. ИИ на основе возможностей.
а). Узкий ИИ. Узкий или слабый искусственный интеллект (Narrow AI, NAI или Artificial Narrow Intelligence, ANI) – это узко специализированный ИИ, обученный выполнять конкретную задачу. Слабый ИИ работает в рамках ограниченного и заранее определенного набора параметров, ограничений и контекстов. Примерами использования NAI могут служить пользовательские рекомендации по видео/аудио контенту в популярных онлайн-кинотеатрах или соцсетях, предложения о покупке на сайтах электронной коммерции, автономные автомобили, а также системы распознавания речи и изображений и промышленные роботы и виртуальные персональные помощники, такие как Siri от Apple.
б). Общий ИИ. Общий или сильный искусственный интеллект (General AI, GAI или Artificial General Intelligence, AGI) – версия ИИ, которая выполняет любую интеллектуальную задачу с человеческой эффективностью. Целью общего ИИ является разработка системы, способной думать самостоятельно, как это делают люди. В настоящее время общий ИИ все еще находится в стадии исследования, и предпринимаются усилия по разработке машин с расширенными когнитивными способностями. Общий искусственный интеллект, описывает программирование, которое может воспроизвести когнитивные способности человеческого мозга. При столкновении с незнакомой задачей сильная система ИИ может использовать нечеткую логику для применения знаний из одной области к другой и автономного поиска решения задачи.
в) Супер-ИИ. Искусственный суперинтеллект (Super AI, SAI) – это версия ИИ, которая превосходит людской интеллект и может выполнять любую задачу лучше, чем человек. Возможности машины с супер-ИИ включают следующие виды самостоятельной деятельности: мышление, аргументация, решение головоломок, вынесение суждений, обучение, общение. Сегодня это гипотетическая концепция, но она представляет собой будущее ИИ.
2. ИИ на основе функциональности.
а). Реактивные машины. Реактивные машины – базовая разновидность ИИ, представители которой не хранят прошлый опыт или воспоминания для будущих действий. Такие системы фокусируются на текущих сценариях и реагируют на них, основываясь на наилучших возможных действиях. Популярные примеры реактивных машин включают шахматный суперкомпьютер Deep Blue от IBM и программа для игры в Го AlphaGo от Google. Эти системы ИИ не имеют памяти и зависят от конкретной задачи, но поскольку у него нет памяти, он не может использовать прошлый опыт для обоснования будущих решений. Хорошо подходит для простых задач классификации и распознавания образов. Отлично подходит для сценариев, в которых известны все параметры: может превзойти людей, потому что он может выполнять вычисления намного быстрее. Не способен работать со сценариями, включающими несовершенную информацию или требующими исторического понимания.
б). Машины с ограниченной памятью. Машины с ограниченной памятью могут хранить и использовать прошлый опыт или данные в течение короткого периода времени. У этих систем ИИ есть память, поэтому они могут использовать прошлый опыт для обоснования будущих решений. Например, беспилотный автомобиль может хранить информацию о скорости транспортных средств поблизости, их соответствующих расстояниях, ограничениях скорости и другую важную информацию для навигации в пробках.
в). ИИ с теорией разума. Теория разума или теория сознания относится к типу ИИ, который может понимать человеческие эмоции и убеждения и способен к социальному взаимодействию по человеческому подобию. Этот вид искусственного интеллекта еще не разработан и существует только в концепции. Теория сознания – это психологический термин. Применительно к ИИ это означает, что система должна обладать социальным интеллектом, чтобы понимать эмоции. Этот тип ИИ сможет делать выводы о человеческих намерениях и предсказывать поведение, что является необходимым навыком для систем ИИ, чтобы стать неотъемлемыми членами команд, состоящих из людей. Способен понимать человеческие мотивы и рассуждения. Может предоставить личный опыт каждому на основе его мотивов и потребностей. Способен учиться на меньшем количестве примеров, потому что понимает мотивы и намерения. Считается следующей вехой в эволюции ИИ
г). Самосознающий ИИ. Концепция искусственного интеллекта с самосознанием относится к сверхразумным машинами с их сознанием, чувствами, эмоциями и убеждениями. Ожидается, что такие системы будут умнее человеческого разума и могут превзойти нас в поставленных задачах.
Разновидности интеллектуальных систем. В зависимости от набора компонентов, реализующих определенные функции, можно выделить следующие основные разновидности интеллектуальных систем:
-интеллектуальные информационно-поисковые системы;
–экспертные системы (ЭС);
-расчетно-логические системы;
–гибридные экспертные системы.
Интеллектуальные информационно-поисковые системы являются системами взаимодействия с проблемно-ориентированными (фактографическими) базами данных на естественном, точнее, ограниченном как грамматически, так и лексически (профессиональной лексикой) естественном языке (языке деловой прозы). Для них характерно использование (помимо базы знаний, реализующей семантическую модель представления знаний о проблемной области) лингвистического процессора.
Экспертные системы являются одним из бурно развивающихся классов интеллектуальных систем. Данные системы в первую очередь стали создаваться в математически слабо формализованных областях науки и техники, таких как медицина, геология, биология и другие. Для них характерна аккумуляция в системе знаний и правил рассуждений опытных специалистов в данной предметной области, а также наличие специальной системы объяснений.
Расчетно-логические системы позволяют решать управленческие и проектные задачи по их постановкам (описаниям) и исходным данным вне зависимости от сложности математических моделей этих задач. При этом конечному пользователю предоставляется возможность контролировать в режиме диалога все стадии вычислительного процесса. В общем случае по описанию проблемы на языке предметной области обеспечивается автоматическое построение математической модели и автоматический синтез рабочих программ при формулировке функциональных задач из данной предметной области. Эти свойства реализуются благодаря наличию базы знаний в виде функционально семантической сети и компонентов дедуктивного вывода и планирования.
Гибридные экспертные системы должны вобрать в себя лучшие черты как экспертных, так и расчетно-логических и информационно-поисковых систем. Разработки в области гибридных экспертных систем находятся на начальном этапе.
Наиболее значительные успехи в настоящее время достигнуты в таком классе интеллектуальных систем, как экспертные системы.
Преимущества и недостатки искусственного интеллекта представлены на рис. 4.2.
Преимущества искусственного интеллекта.
а). Эффективное решение сложных задач. Исследования ИИ сосредоточены на разработке алгоритмов решения сложных задач, способных делать логические выводы и имитировать человеческие рассуждения. Такие виды искусственного интеллекта, как системы прогнозирования фондового рынка, предлагают методы решения неопределенных ситуаций или головоломок с неполной информацией, основывающиеся на практическом использовании теории вероятности.
Рис.4.2. Преимущества и недостатки искусственного интеллекта
б). Облегчение планирования. С помощью ИИ человек может делать прогнозы и выяснять отдаленные последствия своих действий в будущем, чтобы принимать верные решения в настоящем. Планирование на основе искусственного интеллекта позволяет более эффективно достигать целей и оптимизирует общую производительность с помощью инструментов предиктивной аналитики, анализа данных, прогнозирования и моделей оптимизации. Это особенно актуально для робототехники, автономных систем, когнитивных помощников и кибербезопасности.
в). Развитие творчества. ИИ может обрабатывать огромные объемы данных, рассматривать варианты и альтернативы, чтобы находить новые направления творческой мысли или возможности для общественного прогресса. Например, система искусственного интеллекта может предоставить несколько вариантов дизайна интерьера для трехмерной планировки квартиры или предложить несколько неожиданных решений в оформлении фирменного стиля компании.
г). Возможность непрерывного обучения. Машинное обучение подразумевает способность компьютерных алгоритмов улучшать знания ИИ посредством наблюдений и прошлого опыта. Искусственный интеллект в основном использует две модели обучения – контролируемую и неконтролируемую, основное различие между которыми заключается в использовании различных наборов данных. Поскольку системы ИИ обучаются независимо, они требуют минимального вмешательства человека или вообще могут обходиться бег него. Например, технология ML предполагает непрерывный автоматизированный процесс обучения.
д). Создание системы представления знаний. Исследования ИИ вращаются вокруг идеи представления знаний и инженерии знаний. Это относится к представлению «того, что известно» машинам с онтологией для создания набора объектов, отношений и понятий. Представление знаний раскрывает информацию, которую компьютер использует для решения сложных практических проблем, таких как диагностика медицинских заболеваний или взаимодействие с людьми на естественном языке. Исследователи могут использовать представленную информацию для расширения базы знаний ИИ, а также для тонкой настройки и оптимизации своих моделей ИИ.
е). Поощрение социального интеллекта. Аффективные вычисления, также называемые «эмоциональным ИИ» (EAI), – это ветвь ИИ, которая распознает, интерпретирует и моделирует человеческий опыт, чувства и эмоции. С их помощью компьютеры могут считывать выражения лица, язык тела и тон голоса, чтобы позволить системам ИИ взаимодействовать и общаться на человеческом уровне. Исследовательские усилия в направлении «эмоционального ИИ» в перспективе приведут к появлению у машин социального интеллекта.
Недостатки искусственного интеллекта.
О проекте
О подписке