Читать книгу «Токсичность автомобиля» онлайн полностью📖 — Юрия Владимировича Медовщикова — MyBook.
cover

 


















 





Метод конечных элементов, т.е. его вариационный принцип, позволяет найти пробную функцию. Минимизирующую заданный функционал потенциальной энергии – это непосредственно апраксимация Ритца, а сам МКЭ – это обобщение метода Рэлея-Ритца-Галеркина. МКЭ использует вариационный принцип, а не апраксимацию отдельных членов дифференциального уравнения. В методе Ритца все бесконечномерное пространство заменяется пробными функциями с гладкими краевыми условиями. Основное уравнение МКЭ определяет ошибку апраксимаций с помощью линейных элементов Ритца можно считать минимальной. В полудискретном МКЭ задача определяется неизвестными значениями функции в узловых точках. Условие экстремума: в таких вариационных задачах функция должна удовлетворять ряду условий – ищется экстремум одного интеграла при условии, что другой интеграл сохраняется постоянным. Для случая движения, например, одномерной массы под действием силы, пропорциональной пройденному пути при условии постоянной пропорциональности равной 1,уравнение МКЭ имеет определенный вид. МКЭ характеризуется следующими особенностями :

1-физическая областъ делится на под-области или конечные элементы,

2-зависимые переменные апраксимируются функцией специального вида на каждом конечном элементе,

3-подстановка апроксимаций в уравнение дает систему уравнений с неизвестными параметрами, которую можно решить,

4-прочие функции являются непрерывными.

Граничные условия для всех типов задач бывают трех видов: условия Дирихле – первого рода. Неймана – второго рода, Коши – третьего рода, случай когда зависимая переменная и ее нормальная производная связаны точками самой функции на границе. Для первого случая иногда используются штрафные функции, во втором случае задачи имеют слой сопротивления, третий случай характерен для задач движения.

Кроме всех уже указанных вариантов МКЭ существуют и другие. Метод Канторовича-полудискретный или прямой метод апраксимаций, где неизвестные коэффициента уже не скалярны, а непосредственно функции. При этом используется дифференциальное уравнение другого рода. Метод Галеркина построен на интегральном разностном подходе и полиномных, в том числе пробных функциях. Метод наименьших квадратов – как самый простой вариант относится к классу обычных численных методов. Его же называют методом Рунге-Кутта: получаем уравнение большего порядка, чем исходное. Метод переменных направлений Галеркина: для одномерной задачи можно получить матрицу исходной системы линейных уравнений алгебраического вида ленточного типа. В методе невязок для пробной функции требуется, чго бы невязка удовлетворяла также некоторому условию малости -это взвешенный интеграл по данной области.

В общем виде решение системы частных диференциальных уравнений с помощью МКЭ является обычной вариационной задачей с приближениями, которые так же являются невязками решения. особенно для уравнений в частных производных для задач типа Коши, т.е. задач движения. Невязка решения – фактическое расхождение между истинным и апраксимированым значением оптимального решения, поэтому это более общее понятие, которое определяет точность решения. На нее существен-но влияют допущения функционален. В частности, ошибка (из математического анализа и исследования операций):

апраксимация, например, по вариационному методу Ритца, с помощью линейных элементов должна быть минимальна. При этом следует учесть. что это лишь один из исходных моментов, влияющих на точность решения задачи, В дальнейшем необходимо записать условия минимизации, т.е. оптимизации всего функционала в матричном виде на базе системы уравнений Гаусса, Однако. можно решать эту задачу иначе в формулировке на собственные значения, тогда подход будет существенно изменен, Эго более простой способ оптимизации без определения экстремумов функции основных параметров транспортного средства, смысл которого излагается несколько иначе.

При расчетах возникает проблема как глобальной так и локальной оптимизации, поэтому можно использовать различные оптимизационные методы. Причем предпочтение дается данному новому подходу на базе МКЭ. При этом можно говорить или об оптимальном решении или об оптимальных значениях. В области теории движения автомобиля в частности и теории движения транспортного средства вообще могут быть использованы любые простые и сложные математические методы, что нашло очень широкое распространение, Однако они часто не дают подходящего точного решения, а, кроме того, не найдены наиболее эффективные способы. Поэтому, например, для поиска глобальной оптимизации в данном случае можно использовать различные методы исследования операций, но МКЭ – более универсальньй и гибкий метод в этом плане, позволяющий с высокой точностью проводить любые расчеты и находить экстремумы любого рода. В связи с этим предпочтение отдается исследованию его всесторонних возможностей.

 
2.ТЕОРИЯ ДВИЖЕНИЯ АВТОМОБИЛЯ, КАК
ЧАСТНЫЙ СЛУЧАЙ НАЗЕМНОГО
ТРАНСПОРТНОГО СРЕДСТВА.
2.1.Формулировка задачи движения автомобиля
на базе дифференциального уравнения дви-
жения.
 

Движение автомобиля является частным случаем движения наземного транспортного средства, так как характеризуется наличием тяговой силы и сил сопротивления движению консервативного типа. Поэтому уравнение движения автомобиля аналогично уравнению движения другого вида наземного транcпортного средства и может рассматриваться как частный случай, а действующие в системе силы-как обобщенные факторные

Теория движения автомобиля включает в себя много аспектов, однако, в первую очередь сводится к формализации и определению тягово-скоростных свойств, топливной экономичности и пр. Такие параметры, как устойчивость, управляемость, безопасность и пр. в данной работе не рассматриваются, так как являются отдельными самостоятельными задачами. Кроме того, рассматривается упро-щенный случай курсового движения, т.е. движение с собственной относительной системой координат. Этот фактор упрощает методику и расчеты, но не снижает точности, а, кроме того, позволяет создать базовую имитационную модель, которая может пригодиться и в дальнейших исследованиях в разных задачах.


2.2.Уравнение движения автомобиля и

функционалы интегрирования.

 
Уравнение движения автомобиля, как и наземного транспортного средства, может быть представлено в виде тягового баланса (2.1) – (2.8),на основании чего получаются данные интегральные зависимости.
В данных выражениях приняты следующие обозначения исходных параметров:
Ga – полная масса автомобиля, н,
fo – статический коэффициент сопротивления качению,
i – продольный уклон дороги, или величина подъема
или спуска,%,
Cx – коэффициент лобового сопротивления,
pв – плотность воздуха, кг/м3,
F – лобовая площадь автомобиля, м2,
bвр – коэффициент учета вращающихся масс при раэгоне,
Jа – ускорение автомобиля, м/с2,
Me – эффективный крутящий момент двигателя, нм,
Uтр – общее передаточное число трансмиссии,
eta – коэффициент полезного действия трансмиссии,
rк – динамический радиус колеса, м,
 

Для случая выбега при движении за счет сил инерции получаем уравнение движения со свободной силой, которое в дифференциальной форме будет выглядеть как (2.9), где bврв-коэффициент учета вращающихся масс при выбеге, а функционал интегрирования в этом случае будет выглядеть как: (2.10).При равномерной движении исходным уравнением является тяговый или мощностной баланс (2.1).



2.3.Математическая модель автомобиля.


Данная математическая модель автомобиля построена на известных классических понятиях этой области и представляет из себя в целом аналогичную схему. Основной проблемой в этом случае является возможность анализа тягово-скорстных свойств и т. п. на базе разработанной модели с учетом принятого подхода. Поэтому можно рассматривать уже известные подходы как базовые в двух координатных сетках: одна базовая-начальная система координат, другая локальная-совмещенная с автомобилем, или точнее с его центром масс. Случай с двумя координатными сетками рассматривается достаточно редко, поэтому является новым элементом и в данном подходе может дать выигрыш в повышении точности расчетов с использованием соответствующих математических методов.

Таким образом, движение автомобиля сводится к криволинейному движению материальной точки с некоторыми степенями свободы и упрощениями, не влияющими на точность результатов. Поэтому рассматривается не общий случай криволинейного движения на базе уравнения Лагранжа второго рода, а данная система с двумя координатным сетками, причем локальная система перемещается с центром масс автомобиля строго по курсу автомобиля, т.е. существует случай курсового движения. Таким образом, движение в локальной системе координат-плоское двумерное. Это упрощение позволяет добиться существенного выигрыша в плане математического эксперимента.

В данной модели существует несколько степеней свободы: движение вперед-назад, возвратно-поступательного типа; вверх-вниз – в пределах определенных углов наклона. Кроме того, существует возможность присоединения элементов расчета, позволяющих в той или иной степени оценить углы подьема и спуска, а также углы продольного крена, и движение «влево-вправо» самой локальной системы координат. Таким образом для данной математической модели существует 8 основных степеней (это из аналитических апроксимаций автора монографии):

свободы, некоторые из которых имеют ограничения и упрощения. Не учитываются, например, такие факторы, как боковые крены, боковые углы рыскания, связанные в частности с уводом шин, но сама модель дает возможность в перспективе подключать соответствующие известные сложные методики для анализа этих случаев. В то же время в модели учитываются многие необходимые факторы с известными в теории автомобиля упрощениями: например, центр приложения силы аэродинамического сопротивления можно учитывать как фактор дорожного сопротивления, упругость шин учитывается аналогичным образом, а угол подъема определяется упрощенно и т. п.

Схема модели приведена на рис.2.1а,б. Здесь показан общий случай для движения автомобиля с произвольным ускорением на полотне дороги с определенным углом подьема. Для случая равномерного движения будет отсутствовать инерционная сила. На рис.2.16 показано расположение начальной и локальных, движущихся и связанных с автомобилем в виде материальной точки систем координат. В этой модели основные движущие, а также силы сопротивления приведены к центру масс автомобиля, представляемого как материальная точка. Кроме того, позволяет учитывать, например, жесткость подвески, а также упругость шин. Последний фактор дает представление об упругости шины как деформируемом элементе, поэтому в перспективе можно применять и более сложные модели качения. Для материальной точки в данной модели автомобиля можно также с помощью известных подходов оценивать динамическое распределение масс в виде ограничений, в некоторых случаях углы рыскания и т.п.Таким образом, связь локальных систем координат с движущейся материальной точкой может производить численный анализ на базе данной модели курсового движения с высокой точностью. При этом некоторые элементы в математической модели автомобиля можно рассматривать как известные, но вместе с тем отчасти трактовать как новые. Упругость шин, например, в данном представлении является коэффициентом сопротивления качению, который является отношением силы сопротивления качению к нормальной реакции на колесе и зависит от многих факторов. При этом можно учитывать коэффициент динамического перераспределения массы автомобиля, так как изменяется величины нормальных реакций в пятне контакта и параметры скольжения силы при передаче крутящего момента, т.е. как дополнительное упругое сопротивление или буксование. Боковые уводы также могут повлиять на точностъ расчетов, однако, в данной модели, как уже указывалось, они не учитываются, что принципиально важно. Их можно будет учитывать в дальнейшем не-посредственно для соответствующих задач математического моделирования Поэтому первоначально рассматриваются два допущения:

– криволинейное движение с большими радиусами, которое близко приближается к прямолинейному и является курсовым движением;

– величина продольного угла наклона изменяется в необхо-димых диапазонах, характерных для случая движения автомобиля, когда тангенс угла наклона принимается непосредственно равным углу наклона, что давно известно в данной области науки (о вопросах исследования):

Существует и ряд некоторых других малоизученных аспектов. Передаточная функция трансмиссии моделируется в данном случае известным образом и характеризует преобразование крутящего момента по его величине не зависимо от типа движителя и непосредственно трансмиссии. Для механической трансмиссии передаточное число общее определяется простым умножением пере-даточных чисел звеньев, а для автоматической или гидромеханической оно определяется по соотношению входного и выходного моментов, на что, в частности, влияет система управления данным механизмом.

2.4.Элементарный тяговый расчет
и его табличный вид.
(классические методы)

Тяговый расчет является основным известным методом для определения тягово-скоростных и топливно-экономических свойств автомобиля. Однако, он обладает большой погрешностью, так как основан на графоаналитическом методе, из чего следует, что он обладает большой неточностью. Поэтому используя функционалы интегрирования удается не только увеличивать точность расчетов благодаря методу интегрирования, а не графического сложения. но и сделать этот процесс менее трудоемким, простым и быстродейсгвующим. Тяговый расчет в сжатом виде можно представить в виде таблицы 2.1—2.2,а некоторые его составные элементы представлены на рис.2.2.В самом обычном варианте этот метод удобен для расчетов:

в том числе для электропривода


.



Кроме того, можно говорить об обобщении различных групп показателей для оценки эксплуатационных свойств автомобилей на перспективу, так как расширение их номенклатуры и возможность их сопоставимости в функции, например, скорости движения принципиально важно. Этот подход на базе сравнительного анализа продемонстрирован в таблице 2.2. Таким образом, можно даже разнородные показатели свести в единообразную форму и сравнивать их для различных автомобилей.

Поэтому в целом можно расширить возможности и сферу применения для тягового расчета для наземных транспортных средств. При этом можно использовать и новые методы математического моделирования.



 
2.5.Интегральный вид уравнения движения
и определение параметров движения.
2.5.1.Общий случай интегрирования.
 
Рассмотрим случай для полиномной интерполяции мощности двигателя и часового расхода топлива.
 
Путь разгона определяется на основании уравнения (2.7)
как (2.11), а время разгона на основании уравнения (2.8)
как (2.12).Второй интеграл выражения (2.11) представляет собой время разгона, поэтому путь разгона также может быть выражен иначе: (2.13)
В формулах (2.11—2.13) используются следующие расчетные коэффициенты (2.14) – (2.17):
Ме – крутящий момент двигателя при максимальной мощности, нм,
VN – скорость автомобиля, соответствующая макси-
мальной мощности, м/с,
а,в,с – коэффициент полинома (2.18)
We» – удельная угловая скорость,
We – текущая угловая скорость коленвала двигателя, с-1,
WN – угловая скорость при максимальной мощности, с-1,
Vi, Vi+1 – начальная и конечная скорости разгона, м/с,
Выражение (2.12) для определения времени разгона в диапазоне от Vi до Vi+1 может быть записано также в следующем виде (2.19)
где delta – дискриминант.
При значениях характерных для случая многих двухтактных двигателей, -интеграл в уравнении (2.8) будет вида: (2.20).Как показывают расчеты выражения (2.12) и (2.20) дают абсолютно идеинтичные результаты. Данный метод интегрирования для основных показателей основан на полиномной интерполяции характеристик двигателей, что сразу дает в аналитическом виде значение решения. Значения коэффициентов полиномов приведены в таблице 2.3,а формы кривых полиномов на рис.2.3.а-в. Значения коэффициентов полиномов можно определить известными методами.
 




2.5.2.Случай линеаризации.


Кроме того, существует частный случай интегрального вида уравнения движения. Он получается в идеальном случае, если момент двигателя постоянен: случай линеаризации. Иногда линеаризация может оказаться более выигрышной. При этом коэффициенты в уравнении движения (2.3) будут иметь несколько иной вид, а интегральное выражение для определения величины пути можно записать как, м (2.21),а время разгона (2.22). В этом же случае можно записать развернутое уравнение выбега, полученное из уравнения (2.26).Интегрируя его аналогично (2.7) определяем путь выбега (2.27),а время выбега определяется как (2.26),

где bврв – коэффициент учет вращающихся масс при выбеге,

Vв – условная скорость выбега, м/с,

Для вариационных исчисления, т.е. в описанной в дальнейшем задаче метода конечных элементов в теории движения, можно также формулу (2.21) привести к другому виду и использовать его как один из конечных элементов для определения пути разгона: (2.30)

где Vmax – максимальная, в том числе и кинематическая скорость движения автомобиля, м/с,

Для случая определения пути выбега можно получить следующий вид конечного элемента: (2.31)

Данные уравнения могут применяться непосредственно и при вариационной формулировке задачи при правильном подборе коэффициентов полиномов.


2.5.3.Определение расхода топлива при

разгоне автомобиля.


Часовой расход топлива, как известно можно определить через удельный расход топлива:,кг\ч (2.32)

где qe=qnKобКи – удельный расход топлива, г/кВтч,

Коб- коэффициент, учитывающий зависимость удельного расхода топлива от угловой скорости коленчатого вала двигателя,

Ки – коэффициент, учитывающий зависимость удельного расхода топлива от степени использования