Самая ранняя из известных версий теоремы дана в «Началах Евклида», книга IX, предложение 14:
Если число будет наименьшим измеряемым <данными> первыми числами, то оно не измерится никаким иным первым числом, кроме первоначально измерявших <его>.
Далее разъясняется: «Пусть число A будет наименьшим измеряемым первыми числами B, C, D; я утверждаю, что A не измерится никаким иным первым числом, кроме B, C, D». Доказательство этой теоремы только на первый взгляд выглядит убедительно, и эта видимость основательности усиливается цепочкой ссылок: IX-14 → VII-30 → VII-20 → VII-4 → VII-2. Однако здесь допущена элементарная и даже очень грубая ошибка. Её суть в следующем:
Пусть A=BCD, где числа B, C, D простые, (первые). Если допустить теперь существование простого E, отличного от B, C, D, и такого, что A=EI, то делается вывод, что в этом случае A=BCD не делится на E. Это последнее утверждение неверно, поскольку теорема ведь ещё не доказана и не исключено, например, BCD=EFGH, где E, F, G, H простые числа, отличные от B, C, D. Тогда A:E=BCD:E=EFGH:E=FGH, т.е. в этом случае станет возможно, что число A может делиться на число E и тогда доказательство теоремы опирается на аргумент, который ещё не доказан, поэтому конечный вывод неверный. Та же ошибка может попасть и в другие теоремы, использующие разложение целых чисел на простые множители. Видимо, из-за архаичной лексики «Начал Евклида», даже такой великий учёный как Эйлер не обратил должного внимания на эту теорему, иначе вряд ли бы он стал использовать на практике «комплексные числа», которые ей не подчиняются.
Такая же история произошла и с Гауссом, который, также не заметил этой теоремы в «Началах» Евклида, но всё же сформулировал её, когда в ней возникла необходимость. Формулировка и доказательство Гаусса следующие:
«Каждое составное число может быть разложено на простые сомножители только одним единственным образом.
Если мы предположим, что составное число A, равное aαbβcγ…, где a,b,c,… обозначают различные простые числа, разложимо на простые сомножители ещё и другим способом, то прежде всего ясно, что в этой второй системе сомножителей не может встречаться других простых чисел, кроме a,b,c,…, т.к. составленное из этих последних число A не может делиться ни на какое другое простое число» [11, 25].
Это почти точное повторение ошибочной аргументации в доказательстве Евклида. Но если эта теорема не доказана, то всё построенное на натуральных числах основание науки рушится, а все следствия из определений и аксиом теряют свою значимость. И как же теперь быть? Ведь если с доказательством теоремы не справились такие гиганты науки как Евклид и Гаусс, то куда уж нам-то грешным. Но выход всё-таки есть, и он указан в одном удивительном документе, называемом «Письмо-завещание Ферма».
Это письмо было отправлено Ферма в августе 1659 г. его давнему другу и бывшему коллеге по парламенту Тулузы королевскому библиотекарю Пьеру де Каркави, от которого его получил известный французский учёный Христиан Гюйгенс (Christiaan Huygens), первым возглавивший созданную в 1666 г. Французскую Академию Наук. Здесь мы приведём только отдельные выдержки из этого existписьма Ферма, которые нас особенно интересуют [9, 36].
«Сводка открытий в науке о числах. …
1. Поскольку обычные методы, изложенные в Книгах, не достаточны для доказательства очень трудных предложений, я нашёл, наконец, для их решения совершенно особый путь. Я назвал этот способ доказательства бесконечным или неопределённым спуском. Сначала я пользовался им только для доказательства отрицательных предложений, как, например: …что не существует прямоугольного треугольника в числах, площадь которого была бы квадратом». Подробности см. Приложение II.
Наукой о числах названа арифметика и дальнейшее содержание письма не оставляет в этом никаких сомнений. Именно с арифметики начинаются не только математические, но и все другие науки. А в самой арифметике метод спуска один из основополагающих. Далее даются примеры задач, решение которых без этого метода не только очень затруднено, но иногда и вообще вряд ли возможно. Здесь мы назовём только некоторые из этих примеров.
«2. Долгое время я не мог приложить мой метод к утвердительным предложениям, потому что обходы и окольные пути для достижения цели гораздо более трудны, чем те, которые послужили мне для отрицательных предложений. Поэтому, когда мне надо было доказать, что каждое простое число, которое превосходит на 1 кратное четырех, состоит из <суммы> двух квадратов, я был в сильнейшем затруднении. Но, наконец, многократно повторенные размышления пролили свет, которого мне не доставало, и утвердительное предложение стало возможным трактовать моим методом с помощью некоторых новых принципов, которые необходимо было к ним присоединить. Этот прогресс в моих рассуждениях для случая утвердительных предложений таков: если некоторое простое число, которое превосходит на единицу кратное 4-х, не состоит из двух квадратов, то имеется простое число той же природы, меньшее данного, а затем третье, ещё меньшее, и т.д. спускаясь до тех пор, пока не придёте к числу 5, которое является наименьшим из всех чисел этой природы. Оно, следовательно, не может состоять из двух квадратов, что, однако имеет место. Отсюда можно заключить путём доказательства от противного, что все простые числа этой природы должны состоять из двух квадратов».
Эту теорему Ферма своим способом впервые доказал Эйлер в 1760 г. [38], а в рамках очень сложной «Арифметики вычетов» Гаусса эта теорема доказывается в одном абзаце [23]. Однако повторить доказательство самого Ферма никому так и не удалось. «… 3. Имеется бесконечно много вопросов такого рода, но существуют и другие, которые требуют новых принципов для применения к ним метода спуска… Таков следующий вопрос, который Баше, как он сознаётся в своём комментарии к Диофанту, не смог доказать. По этому поводу Декарт в своих письмах сделал такое же заявление, признаваясь, что считает его настолько трудным, что не видит никакого пути для его решения. Каждое число есть квадрат или состоит из двух, трех или четырех квадратов».
Ещё раньше 22 года назад в октябре 1636 года письмом к Мерсенну Ферма сообщал о той же задаче как о своём открытии, но в общем виде, т.е. для любых многоугольных чисел (напр., треугольников, квадратов, пятиугольников и т.д.). Впоследствии он даже назвал эту теорему золотой. Следовательно, метод спуска был открыт им в самом начале его исследований по арифметике. К моменту написания письма-завещания Ферма уже знал от Каркави, что вопрос о создании Французской Академии наук практически решён и ему нужно лишь дождаться окончания строительства здания, чтобы сбылась мечта всей его жизни стать профессиональным учёным, причём в ранге академика. Гюйгенсу было поручено собрать материалы первых академических изданий. Для них Ферма предлагал открытый им метод спуска и решение на его основе конкретных арифметических задач.
Однако о том, что эти задачи очень трудны, мало кто знал и Ферма было понятно, что опубликуй он их решения, то они вообще не произведут никакого впечатления. У него уже был такой опыт и теперь он приготовил настоящий сюрприз. Для тех, кто не оценит по достоинству его решения, он предложит решить ещё одну задачу. Это основная теорема арифметики, имеющая особую значимость для всей науки, поскольку без неё вся теория теряет силу. Ферма обнаружил в доказательстве Евклида ошибку и пришёл к выводу, что доказать эту теорему без применения метода спуска чрезвычайно трудно, если вообще возможно. Однако теперь-то мы можем раскрыть и эту тайну с помощью наших возможностей заглянуть в тайник Ферма с «еретическими письменами» и вернуть его утраченное доказательство науке в виде представленной ниже реконструкции.
Итак, чтобы доказать основную теорему арифметики, предположим, что существуют равные натуральные числа A, B, состоящие из разных простых множителей:
A=B где A=pp1p2 …pn; B=хx1x2 …xm ; n≥1; m≥1 (1)
В силу равенства чисел A, B каждое из них делится на любое из простых чисел pi или xi. Каждое из чисел A, B может состоять из любого набора простых множителей, в т. ч. и одинаковых, но при этом среди них нет ни одного pi равного xi, иначе в (1) они были бы сокращены. Теперь (1) можно представить, как: pQ=xY где p, x – минимальные простые числа среди pi, xi; Q=A/p; Y=B/x (2)
Поскольку множители p, x разные, условимся, что p>x; x=p–δ1, тогда pQ=(p–δ1)(Q+δ2) где δ1=p–x; δ2=Y–Q (3)
Откуда следует: Qδ1=(p – δ1)δ2 или Qδ1=xδ2 (4)
Уравнение (4) – это прямое следствие предположения (1). Правая часть этого уравнения содержит в явном виде простой множитель x. Однако в левой части уравнения (4) число δ1 не может содержать множитель x, т.к. δ1=p–x не делится на x из-за того, что p – простое число. Число Q также не содержит множитель x, т.к. по нашему предположению оно состоит из множителей pi, среди которых нет ни одного равного x. Таким образом, справа в уравнения (4) есть множитель x, а слева его нет. Тем не менее нет оснований утверждать, что это невозможно, т.к. мы изначально допускаем существование равных чисел с разными простыми множителями. Тогда остаётся лишь признать, что если существуют натуральные числа A=B, составленные из разных простых множителей, то необходимо, чтобы в этом случае существовали и другие натуральные числа A1= Qδ1 и B1=xδ2; также равные между собой и составленные из разных простых множителей. Если учитывать, что δ1=(p–x)<p, а δ2=(Y–Q)<Y, то после сопоставления уравнения (4) с уравнением (2) можно констатировать: A1 = B1, где A1<A; B1<B (5)
Теперь мы получаем ситуацию, аналогичную ситуации с числами A, B, только с меньшими числами A1, B1. Анализируя затем (5) изложенным выше способом, мы будем вынуждены признать, что должны существовать числа A2=B2, где A2<A1; B2<B1 (6)
Следуя этим путем, мы неизбежно придем к случаю, когда существование чисел
Ak=Bk, где Ak<Ak-1; Bk<Bk-1 как прямое следствие предположения (1) станет невозможно. Следовательно, наше начальное предположение (1) также невозможно и таким образом теорема доказана41. Глядя на это очень простое и даже элементарное доказательство методом спуска, естественно, возникают недоуменные вопросы, как же это могло так случиться, что в течение многих веков наука не только это доказательство не получила, но и была в полном неведении, что у неё нет никакого доказательства вообще?
С другой стороны, даже заблуждаясь в этом вопросе, т.е. считая, что эта теорема была доказана ещё Евклидом, как наука могла её игнорировать, используя «комплексные числа» и обрекая себя тем самым на разрушение изнутри? И наконец, как же можно объяснить, что эта очень простая, по сути, теорема, на которой держится вся наука, вообще не преподаётся в средней школе?
Что же касается метода спуска, то данное доказательство является одним из самых простых примеров его применения, что встречается довольно редко из-за широкой универсальности этого метода. Гораздо чаще для применения метода спуска требуется большое напряжение мысли, чтобы подвести под него логическую цепь рассуждений. С этой точки зрения могут быть поучительны и некоторые другие особые примеры решения задач этим методом.
Мы рассмотрим теперь ещё один пример задачи из письма-завещания Ферма, которая сформулирована там следующим образом:
Существует только один целый квадрат, который, увеличенный на два, даёт куб, этот квадрат равен 25.
Когда по предложению Ферма её попытался решить лучший английский математик того времени Джон Валлис (John Wallis), то он был очень сильно раздосадован и вынужден признать, что не может это сделать. Более двух веков считалось, что решение этой задачи получил Леонард Эйлер, но его доказательство основано на применении «комплексных чисел», а мы-то знаем, что это вовсе не числа, т.к. они не подчиняются основной теореме арифметики. И только в конце ХХ века Андрé Вейль (André Weil) с помощью метода треугольников Ферма, всё-таки сумел получить доказательство [17]. Это был большой прогресс, т.к. здесь использован чисто арифметический метод, однако применительно к данной задаче он явно был притянут за уши. Мог ли Ферма решить эту задачу проще? Ответ на этот вопрос мы также извлечём из тайника, что позволит нам раскрыть и эту тайну науки в виде следующей реконструкции. Итак, мы имеем уравнение p3=q2+2 с очевидным решением p=3, q=5. Для доказательства утверждения Ферма, предположим, что существует ещё одно решение
P>p=3, Q>q=5, которое удовлетворяет уравнению
P3=Q2+2 (1)
Поскольку очевидно, что Q>P, то пусть
Q=P+δ (2)
Подставляя (2) в (1), получим:
P2(P–1)–2δP–δ2=2 (3)
О проекте
О подписке