Читать книгу «Чудеса арифметики от Пьера Симона де Ферма» онлайн полностью📖 — Юрия Вениаминовича Краскова — MyBook.

1. Величайший феномен науки

Обычно образ науки представляется как упорядоченная система знаний обо всем, что можно наблюдать в окружающем нас мире. Однако образ этот иллюзорный и на самом деле никакой упорядоченности в науке нет, поскольку она формируется не развитием знаний от простого к сложному, а всего лишь историческим процессом появления новых теорий. Классический пример – это аналитическая геометрия Декарта – Ферма, где, по сравнению с геометрией Евклида, наука видит лишь удобное для аналитики представление числовых функций в системе координат, но никак не оценивает качественный переход от натурализованных элементов, (точка, линия, поверхность и т.п.), к числам1.

Казалось бы, это настолько несущественно, что не может иметь каких-то последствий, однако по иронии судьбы именно после расширения числовой оси до числовой плоскости наука была безнадежно скомпрометирована, т.к. вдруг выяснилось, что такое представление чисел не подчиняется основной теореме арифметики о том, что разложение целого числа на простые множители всегда единственно возможное. Но тогда должен быть сделан и соответствующий вывод о том, что никакой числовой плоскости не существует и всё, что с ней связано должно быть списано в архив истории.

Но не тут-то было! Если в науке нет упорядоченности, то нет и никаких оснований для привязки новых знаний к более ранним. Потому для учёного мира вовсе и не новость, что для числовой плоскости основная теорема арифметики не действует. Это было известно ещё полтора столетия назад и никому даже в голову не пришло отказаться от этой идеи. За это время столько всего было понаделано, что вот так просто взять и всё это выбросить ну никак не представляется возможным. Ведь многие «специалисты» с их «научными» исследованиями могут потерять работу, а все монографии, справочники и учебники по этой теме разом превратятся в тонны макулатуры2.

Да, никого из деятелей науки не удивишь тем, что основная теорема арифметики может не выполняться, они и не к такому уже привыкли. Но вот чем они очень даже будут удивлены, так это тем, что до сих пор никому не удалось её доказать! Все «доказательства» этой теоремы в учебниках и в Интернете либо явно ошибочны, либо с душком. Но ведь тогда получается, что с одной стороны, наука сама себя лишает легитимности, т.к. не признаёт фундаментальную теорему, на которой она сама и держится, а с другой стороны, она в течение всей своей истории просто была не в курсе того, что у неё нет доказательства этой самой теоремы3.

И как теперь быть? Можно ли воспринимать этот вопиющий факт иначе как деградацию науки в самих её основах? Кому-то такой вывод может показаться слишком уж категоричным, но, к сожалению, для сегодняшней науки это ещё очень мягко сказано. Экая невидаль, какая-то теорема не действует. А как быть с тем, когда не действует закон сохранения энергии? Ведь сегодняшняя астрофизика просто не мыслит себя без «теории большого взрыва», по которой все галактики во Вселенной разлетаются в разные стороны как пушинки. И вот такая полоумная фантасмагория на полном серьёзе представляется сегодня как одно из величайших «научных» достижений, а фиговые листочки типа «скрытая энергия» и «тёмная материя» запросто закрывают проблемы с пресловутыми законами сохранения.

На фоне имеющихся у науки действительно выдающихся достижений, можно не сомневаться, что этот вирус тёмной напасти, проникший в сами её основы, не мог возникнуть ниоткуда и явно привнесён извне. Злонамеренный характер вируса раскрывает и то обстоятельство, что он всегда прячется под личиной «благих намерений». А раз так, то и задача избавления от напасти упрощается, т.к. это всего лишь козни нечестивого, от которых у настоящей науки всегда имелся достаточно надёжный иммунитет.

Однако для данного конкретного вируса этот иммунитет стал действовать совершенно особым образом. Вдруг откуда ни возьмись появилась немудрёная на вид задачка под названием «Великая теорема Ферма» (ВТФ), которую никто не мог доказать, и это несмотря на обещанные премии и почести. Она просто издевалась над всеми, кто пытался найти решение независимо от того, был ли это амбициозный претендент на премию или величайший ученый. С ВТФ даже опасались связываться, чтобы ненароком не подмочить свою репутацию.

Эта увлекательная игра с заведомо провальным результатом затянулась на века и в конце концов так всех измучила, что эту проблему нужно было как-то закрыть. Очень серьезные люди приняли решение – задачу решить, премии выплатить. Ну давно бы так! Сказано – сделано…, впрочем, о том, что было дальше, мы расскажем в следующем пункте нашей работы. Но это будет только присказка, т.к. для проникновения в суть этого удивительного явления нам придётся неким необычным образом вернуться обратно в прошлое. И тогда в результате наших исследований выяснится, что эта задачка-то была давным-давно решена ещё в XVII веке, когда во Франции начал править король-солнце Людовик XIV, а ему верно служили два гасконца, один из них – это известный всем из романов А. Дюма королевский мушкетёр месье Д’Артаньян, а другой – его ровесник и земляк сенатор из Тулузы месье де Ферма.

История не сохранила для нас в письменном виде всего того, что было бы нам особенно интересно, поэтому ничего и не остаётся иного, как попытаться восстановить некоторые события, причём весьма необычным способом, о чём мы также ещё расскажем. Однако хорошо известно, что этот сенатор ещё при жизни прославился тем, что предлагал знатным вельможам простенькие на вид арифметические задачки, которые почему-то никто не мог решить. А вот о той самой диковинной и недоказанной до сих пор теореме он, видимо, не успел, (а может и не пожелал), никому сообщить, поэтому её также часто называют «Последняя теорема Ферма».

Особенно любопытен тот факт, что не сохранилось ни единой бумажки от рукописей его научных трудов по арифметике, причём даже тех, которые были изданы после его смерти. Исключением являются только письма, собранные от разных его респондентов. Этот странный факт свидетельствует о том, что имел место какой-то удивительный и даже невероятный ход событий, приведший к такой ситуации, и установление одного только этого факта очень существенно меняет всю ту картину, которая исследователям представлялась до сих пор.

Ведь они-то полагали, что у Ферма не могло быть доказательства этой его последней теоремы и всяческими доводами это обосновывали. Но тогда им нужно быть последовательными и настаивать на том, что и все другие свои задачи Ферма тоже решить не мог, т.к. он в своё оправдание не оставил нам никаких объяснений. Вот когда их решили такие гиганты науки как, скажем, Эйлер или Гаусс, ну тогда совсем другое дело и можно допустить, что Ферма может быть тоже мог их решить. Но вот если даже они не справились, то доверять словам, смахивающим на пустое бахвальство, наука никак себе позволить не может.

В нашем исследовании мы пойдём другим путём и будем исходить из того, что доказательство последней теоремы Ферма вне всяких сомнений должно было быть записано на бумаге хотя бы в эскизном варианте. Но если это так, то куда же оно могло запропаститься, причём вместе со всеми остальными бумагами? Ответ на этот вопрос может пролить свет на исцеление от упомянутой выше напасти, приведшей к тому, что по непонятным причинам вот это самое доказательство на целых три с половиной столетия стало не только нерешаемой проблемой, но и настоящим камнем преткновения для науки.

Загадки, которые нам предстоит теперь исследовать, видятся вначале как случайное столкновение всякого рода больших и маленьких историй, однако в этом кажущемся хитросплетении событий есть своя довольно жёсткая логика. Так случилось, что время жизни и деятельности Ферма совпало с переломным этапом истории, когда происходил медленный и очень болезненный переход к эпохе Возрождения после долгого периода ужасающего гнёта инквизиции, не терпящей передовой научной мысли и организовавшей во Франции массовое истребление протестантов-гугенотов католиками. С учётом этого обстоятельства, появляется возможность объяснить такие факты и события, которые с позиций более позднего времени выглядят очень странными и непонятными. В частности, следует отметить, что в те времена, особенно для людей незнатного происхождения, было бы очень опасно иметь у себя дома даже совсем безобидные записки с формулами и вычислениями, которые могли бы трактоваться как очень опасные для их обладателей письмена еретического содержания.

Отец Пьера Домини́к Ферма (Dominique Fermat) был богатым купцом, но не имел дворянского титула. В 1601 году у него родился сын Пьер, о чём имеется запись в церковной книге, однако его мать Франсуаза Казнёв, (Françoise Cazeneuve), и её ребёнок умерли, не прожив после родов и трёх лет. Если бы ребёнок всё же выжил, то без знатного происхождения у него не было бы никаких шансов стать ни сенатором, ни тем более великим учёным. А когда после утраты первой жены Доминик женился на имеющей дворянские корни Клэр де Лон (Claire de Long), то это и обеспечило саму возможность появления будущей знаменитости [16].

Пьер Симон де Ферма, (Pierre Simon de Fermat), родился не в 1601, как это считалось до сих пор, а в 1607, (или в 1608), году [1] в местечке Бомон де Ломань недалеко от Тулузы. С детства он выделялся таким дарованием, что Доминик Ферма не жалел средств на его образование и отправил на обучение сначала в Тулузу, (1620 – 1625 гг.), а затем в Бордо и Орлеан (1625 –1631 гг.). Пьер не только хорошо учился, но и проявил блестящие способности, которые вместе с родственными связями по линии матери и финансовой поддержкой отца, дали ему все возможности получить лучшее образование по специальности юриста. Во время учебы молодой будущий сенатор Пьер Ферма очень увлекался чтением научной литературы и так проникся идеями великих мыслителей, что и сам ощутил в себе стремление к научному творчеству. Для того, чтобы больше узнать о том, что его особенно интересовало, он овладел пятью языками4 и с упоением зачитывался трудами классиков того времени. В конечном итоге он заслуженно получил самое высокое образование, которое было возможно в те времена и в глубине души лелеял мечту о том, чтобы получить возможность продолжать трудиться на поприще науки.

Если бы поддержка карьерного роста Пьера Ферма на том и завершилась, то и речи бы не могло быть о будущем сенаторе, т.к. даже простая адвокатская деятельность требовала в те времена высочайшего соизволения свыше. Отсюда становится понятно, почему решающим шагом в родительской опеке Пьера стала его женитьба в 1631 г. на Луизе де Лон, (Louise de Long), дальней родственнице (четвероюродной племяннице) его матери. Понятно, что такое решение никак не могло быть спонтанным, тем более что родственные браки могли заключаться только с разрешения Папы Римского.

И вновь деньги Доминика Ферма решили эту совсем не простую проблему. Отец Луизы был советником тулузского парламента и, будучи на службе у короля Людовика XIII, получил дворянский титул, поэтому у Пьера не было проблем с трудоустройством. Но вот рассчитывать на то, что дальше всё пойдёт легко и гладко, было бы заблуждением. После окончания учёбы, женитьбы и начала работы действительность виделась Пьеру совсем не такой радужной. Серые будни суеты в зарабатывании средств на хлеб насущный шли день за днём и не оставляли никаких надежд на то, чтобы заниматься наукой. И тогда это было ещё очень большим благом иметь в рамках адвокатской деятельности возможности поддерживать хоть и не роскошное, но всё же безбедное житие в те тяжёлые для Франции времена.

Новая опасность для Пьера появилась неожиданно. Очередная эпидемия чумы унесла жизнь его тестя и это могло очень плохо отразиться на его судьбе. Однако к тому времени он уже сумел установить дружеские связи с другими сенаторами, что открыло ему дорогу в парламент и в итоге позволило обратить несчастье в свою пользу. С помощью изрядной порции денег Доминика он всё же сумел занять освободившуюся должность чиновника по приёму жалоб в кассационной палате Тулузского парламента.

Биографы Пьера Ферма оценивают его карьеру как просто блестящую, но при этом упускают из виду одну очень существенную деталь. Именно такая вот карьера наглухо закрывает ему все даже малейшие возможности заниматься наукой. Они не учли то обстоятельство, что есть королевское предписание, не допускающее на должности советников парламентов людей, занимающихся научными исследованиями, могущими противоречить Священному Писанию. Но поскольку Пьер стал сенатором, то это и поставит большой жирный крест на его мечтах заниматься наукой на профессиональной основе. Этот крест он будет нести до конца своей жизни.

Более того, как католик он не должен совершать ни одного смертного греха и обязан регулярно раз в году исповедоваться о совершённых им простительных грехах. В качестве такого простительного греха Пьер сообщает на исповеди о своей умеренной праздности при чтении книг «Арифметика» Диофанта Александрийского и «Задачи занимательные и приятные, связанные с числами». Риск впасть в немилость при таком грехопадении был невелик, ведь их издал абсолютно безупречный во всех отношениях Клод Гаспар Баше де Мезириа́к (Claude Gaspard Bachet de Méziriac), высокопоставленный учёный лингвист и будущий член Французской академии, учреждённой кардиналом Ришелье в 1635 году.

Рис. 6. Диофант Александрийский


Здесь, конечно, возникнет вопрос о тайне исповеди. Но если даже в наше время по отношению к католической церкви этот вопрос выглядит очень уж наивно, то что же говорить о временах, когда верховными исполнителями королевской власти были кардиналы. Все священники были обязаны информировать власти о том, чем живут их прихожане и особенно чиновники на государственных должностях. Информация от священников также была под контролем, для чего на места направлялись уполномоченные проверяющие.





















1
...
...
13