Читать книгу «Как учится машина. Революция в области нейронных сетей и глубокого обучения» онлайн полностью📖 — Яна Лекуна — MyBook.

Нейробиология и перцептрон

В 1950-х гг., когда «великие магистры» классического искусственного интеллекта, основанного на логике и графах, раздвинули границы его применения, пионеры машинного обучения сформулировали альтернативные идеи. Они были уверены, что логики недостаточно, чтобы компьютерные системы были способны решать сложные задачи. Необходимо было приблизиться к функционированию мозга и тем самым сделать системы способными программировать самих себя, опираясь на механизмы обучения мозга. Это направление основано на так называемом «глубоком обучении» (deep learning) и искусственных нейронных сетях, – именно в этой области я и работаю. На подобных механизмах основана работа большинства продвинутых современных приложений, включая автономные автомобили.

Происхождение метода относится к середине прошлого века. Еще в 1950-х гг. пионеры искусственного интеллекта поддерживали теории, разработанные Дональдом Хеббом, канадским психологом и нейробиологом, который, в частности, размышлял о роли нейронных связей в обучении. Вместо того чтобы воспроизводить логические цепочки человеческих рассуждений, почему бы не исследовать их носитель, этот потрясающий биологический процессор, которым является мозг?

Таким образом, исследователи вычислений сконцентрировались на нейронном способе обработки информации в отличие от ранее применявшейся логической, или «последовательной», обработки. Они нацелились на моделирование биологических нейронных цепей. Машинное обучение, на которое были направлены их усилия, основывалось на оригинальной архитектуре, сети математических функций, которые по аналогии называют «искусственными нейронами».

Они улавливают входной сигнал, и нейроны в сети обрабатывают его таким образом, что на выходе этот сигнал идентифицируется. Сложность операции, например, распознавание образов, поддерживается комбинированным взаимодействием очень простых элементов, а именно искусственных нейронов. Так и в нашем мозге взаимодействие основных функциональных единиц – нейронов – порождает сложные мысли.

Возникновение описываемой концепции датируется 1957 г.: в том же году в Корнельском университете психолог Фрэнк Розенблатт, вдохновленный когнитивной теорией Дональда Хебба, построил перцептрон – первую обучающуюся машину. Мы рассмотрим ее в следующей главе, так как она являются эталонной моделью машинного обучения. После обучения перцептрон способен, например, распознавать образы (геометрические фигуры, буквы и т. д.).

В 1970-х гг. два американца, Ричард Дуда, в то время профессор электротехники в Университете Сан-Хосе (Калифорния), и Питер Харт – ученый-компьютерщик из SRI (Стэнфордского исследовательского института) в Менло-Парке (Калифорния), обсуждали все эти так называемые методы «распознавания статистических форм[13]», примером которых является перцептрон. С самого начала их руководство стало мировым эталоном, Библией распознавания образов для всех студентов… и для меня тоже.

Но перцептрон далеко не всесилен. Система, состоящая из одного слоя искусственных нейронов, имеет «врожденные» ограничения. Исследователи пытались увеличить его эффективность, вводя несколько слоев нейронов вместо одного. Но без алгоритма обучения слоев, который к тому моменту еще не был известен, такие машины все еще оставались очень малоэффективными.

Эпоха застоя

Перейдем к кому времени, когда в 1969 г. Сеймур Паперт и Марвин Мински – тот самый, который в 1950-х гг. увлекался искусственными нейронными сетями, прежде чем отречься от них, опубликовали книгу «Перцептроны: Введение в вычислительную геометрию»[14]. Они математически доказали пределы возможностей перцептрона, и некоторые из доказанных ими ограничений по сути поставили крест на использовании этой и подобных машин.

Казалось, развитие уперлось в непреодолимую стену. Эти два профессора Массачусетского технологического института пользовались большим авторитетом, так что их работа наделала много шума. Агентства, финансирующие исследования, прекратили поддержку исследовательских работ в этой области. Как и исследования в GOFAI, исследования нейронных сетей пережили серьезный застой.

В этот период большинство ученых перестали говорить о создании умных машин, способных к обучению. Они предпочитали ограничивать свои амбиции более приземленными проектами. Используя методы, унаследованные от нейронных сетей, они создали, например, «адаптивную фильтрацию» – процесс, лежащий в основе многих коммуникационных технологий в современном мире. Прежде физические свойства проводных линий связи сильно ограничивали передачу высокочастотных сигналов, приводя к их существенным искажениям уже на расстоянии нескольких километров. Теперь сигнал восстанавливается с помощью адаптивного фильтра. Используемый алгоритм называется Luckyʼs Algorithm в честь его изобретателя Боба Лаки, который в конце 1980-х руководил отделом Bell Labs, где тогда работало около 300 человек. в том числе и я.

Без адаптивной фильтрации у нас не было бы телефона с громкой связью, который позволяет вам говорить в микрофон без самовозбуждения, происходящего от усиления микрофоном звука громкоговорителя (когда это случается, мы слышим громкий вой или свист). В эхокомпенсаторах, кстати, используются алгоритмы, очень похожие на алгоритм перцептрона.

Не появился бы без этой технологии и модем[15]. Это устройство позволяет одному компьютеру коммуницировать с другим компьютером по телефонной линии или иной линии связи.

Преданные последователи

Тем не менее, и во времена застоя в 1970-х и 1980-х гг. некоторые ученые продолжали работать над нейронными сетями, хотя научное сообщество считало их сумасшедшими, чуть ли не фанатиками. Я имею в виду Теуво Кохонена, финна, который написал об «ассоциативных воспоминаниях» – теме, близкой к нейронным сетям. Я также говорю и о группе японцев – в Японии существует изолированная инженерная экосистема, отличная от западной, – и среди них о математике Сун-Ити Амари и исследователе искусственного интеллекта Кунихико Фукусима. Последний работал над машиной, которую он назвал «когнитроном», по аналогии с термином «перцептрон». Он создал две его версии: «когнитрон» 1970-х и «неокогнитрон» 1980-х. Как и Розенблатт в свое время, Фукусима был вдохновлен достижениями нейробиологии, особенно открытиями американца Дэвида Хьюбела и шведа Торстен Н. Визеля.

Эти два нейробиолога получили Нобелевскую премию по физиологии в 1981 г. за свою работу над зрительной системой кошек. Они обнаружили, что зрение возникает в результате прохождения визуального сигнала через несколько слоев нейронов, от сетчатки до первичной зрительной коры, затем в другие области зрительной коры, и, наконец – в нижневисочную кору. Нейроны в каждом из этих слоев выполняют особые функции. В первичной зрительной коре каждый нейрон связан только с небольшой областью поля зрения, а именно со своим рецепторным полем. Такие нейроны называются «простыми». В следующем слое другие нейроны включают активацию предыдущего слоя, что помогает поддерживать представление изображения, если объект немного перемещается в поле зрения. Такие нейроны называются «сложными».

Таким образом, Фукусима был вдохновлен идеей первого слоя простых нейронов, которые обнаруживают простые узоры в небольших рецепторных полях, выдающих изображение, и сложных нейронов в следующем слое. Всего в неокогнитроне было пять слоев: простые нейроны – сложные нейроны – простые нейроны – сложные нейроны, и затем «классификационный слой», подобный перцептрону. Он, очевидно, использовал для первых четырех уровней некоторый алгоритм обучения, но последний был «неконтролируемым», то есть он не принимал во внимание конечную задачу. Такие слои обучались «вслепую». Только последний слой обучался под наблюдением (как и перцептрон). У Фукусимы не было алгоритма обучения, который регулировал бы параметры всех слоев его неокогнитрона. Однако его сеть позволяла распознавать довольно простые формы, например, символы чисел.

В начале 1980-х гг. идеи Фукусимы поддерживали и другие ученые. Некоторые североамериканские исследовательские группы также работали в этой области: психологи Джей Макклелланд и Дэвид Румелхарт, биофизики Джон Хопфилд и Терри Сейновски, и ученые-компьютерщики, в частности Джеффри Хинтон – тот самый, с которым я впоследствии разделю Премию Тьюринга, присужденную в 2019 г.

Мой выход на сцену

Я начал интересоваться всеми этими темами в 1970-х гг. Возможно, любопытство к ним зародилось во мне еще, когда я наблюдал за моим отцом, авиационным инженером и мастером на все руки, который в свободное время занимался электроникой. Он строил модели самолетов с дистанционным управлением. Я помню, как он сделал свой первый пульт для управления небольшой машиной и лодкой во время забастовок в мае 1968 г., когда он проводил много времени дома. Я не единственный в семье, кому он передал свою страсть к любимому делу. Мой брат, который на шесть лет младше меня, тоже сделался ученым-компьютерщиком. После академической карьеры он стал исследователем в компании Google.

С самого раннего детства меня манили новые технологии, компьютеризация, покорение космоса… Еще я мечтал стать палеонтологом, потому что меня очень интриговал человеческий интеллект и его эволюция. Даже сегодня я по-прежнему верю, что работа нашего мозга остается самой загадочной вещью в мире. Я помню, как в Париже на большом экране я вместе с моими родителями, а также дядей и тетей – «фанатами» научной фантастики, смотрел фильм «2001: Космическая одиссея». Мне было тогда восемь лет. Фильм затронул все, что я любил: космические путешествия, будущее человечества и восстание суперкомпьютера «Хэл», который готов был убивать ради собственного выживания и успеха миссии. Уже тогда меня волновал вопрос о том, как воспроизвести человеческий интеллект в машине.

Неудивительно, что после школы я захотел воплотить эти мечты в жизнь. В 1978 г. я поступил в Парижскую высшую школу электронной инженерии (École Supérieure d'Ingénieurs en Électrotechnique et Électronique, ESIEE) в которую можно подавать заявление сразу после получения степени бакалавра, без затрат времени на дополнительную подготовку. (Откровенно говоря, длинная учеба – не единственный способ добиться успеха в науке. Я могу это подтвердить на своем примере.) А поскольку учеба в ESIEE предоставляет студенту некоторую свободу, я сумел воспользоваться этим.

Плодотворное чтение

Меня воодушевили новости о дебатах на конференции Cerisy о врожденном и приобретенном знании[16], прочитанные мною в 1980 г. Лингвист Ноам Хомски подтвердил, что в мозге существуют исходно заложенные структуры, позволяющие человеку научиться языку. Психолог Жан Пиаже защищал идею о том, что любое обучение задействует определенные, уже существующие структуры мозга, и что овладение языком осуществляется поэтапно по мере того, как формируется интеллект. Таким образом, интеллект будет результатом обучения, основанного на обмене информацией с внешним миром. Эта идея мне понравилась, и мне стало интересно, как ее можно применить в отношении машины. В этой дискуссии принимали участие именитые ученые, в том числе Сеймур Паперт. В ней он восхвалял перцептрон, который описывал как простую машину, способную обучаться сложным задачам.

Так я и узнал о существовании обучающейся машины. Эта тема меня просто очаровала! Поскольку я не учился по средам после обеда, я начал рыскать по полкам библиотеки Национального института компьютерных и автоматических исследований в Роккенкуре (National Institute for Research in Digital Science and Technology, сокращенно «Inria»). У этого учреждения самый богатый библиотечный фонд ИТ-литературы в Иль-де-Франс. Я вдруг понял, что на Западе больше никто не работает с нейронными сетями, и с еще большим удивлением обнаружил, что книга, положившая конец исследованиям перцептрона, принадлежит перу того же самого Сеймура Паперта!

Теория систем, которую в 1950-х гг. мы называли кибернетикой, и которая изучает естественные (биологические) и искусственные системы – еще одна моя страсть. Возьмем, например, систему регулирования температуры тела: организм человека поддерживает температуру 37 ℃ благодаря наличию своеобразного «термостата», который корректирует разницу между своей температурой и температурой снаружи.

Меня увлекла идея самоорганизации систем. Каким образом относительно простые молекулы или объекты могут спонтанно организовываться в сложные структуры? Как может появиться интеллект из большого набора простых взаимодействующих нейронов?

Я изучал математические работы по теории алгоритмической сложности Колмогорова, Соломонова и Чайтина. Книга Дуды и Харта[17], о которой я уже упоминал, стала для меня настольной. Я читал журнал «Биологическая кибернетика» («Biological Cybernetics. Advances in Computational Neuroscience and in Control and Information Theory for Biological Systems», издательство Springer), посвященный математическим моделям работы мозга или живых систем.

Все эти вопросы, оставленные без ответа в период застоя искусственного интеллекта, не выходили у меня из головы, и у меня постепенно стало формироваться убеждение: если мы хотим создавать интеллектуальные машины, недостаточно, чтобы они работали только логически, они должны быть способными учиться, совершенствоваться на собственном опыте.

1
...