– Головоломка моя зародилась в обстановке коммунальной квартиры. Задача, так сказать, бытовая. Жилица – назову её для удобства Тройкиной – положила в общую плиту 3 полена своих дров, жилица Пятёркина – 5 поленьев, жилец Бестопливный, у которого, как вы догадываетесь, не было своих дров, получил от обеих гражданок разрешение сварить обед на общем огне. В возмещение расходов он уплатил соседкам 8 рублей. Как должны они поделить между собой эту плату?
– Пополам, – поспешил заявить кто-то. – Бестопливный пользовался их огнём в равной мере.
– Ну нет, – возразил другой, – надо принять в соображение, как участвовали в этом огне дровяные вложения гражданок. Кто дал 3 полена, должен получить 3 рубля; кто дал 5 поленьев, получает 5 рублей. Вот это будет справедливый делёж.
Рис. 2. «В возмещение расходов он уплатил соседкам 8 рублей»
– Товарищи, – взял слово тот, кто затеял игру и считался теперь председателем собрания. – Окончательные решения головоломок давайте пока не объявлять. Пусть каждый ещё подумает над ними. Правильные ответы судья огласит нам за ужином. Теперь следующий. Очередь за вами, товарищ пионер!
– В нашей школе, – начал пионер, – имеется 5 кружков: политкружок, военный, фотографический, шахматный и хоровой. Политкружок занимается через день, военный – через 2 дня на 3-й, фотографический – каждый 4-й день, шахматный – каждый 5-й день и хоровой – каждый 6-й день. 1 января собрались в школе все 5 кружков, а затем занятия велись в назначенные по плану дни, без отступлений от расписания. Вопрос состоит в том, сколько в первом квартале было ещё вечеров, когда собирались в школе все 5 кружков.
– А год был простой или високосный? – осведомились у пионера.
– Простой.
– Значит, первый квартал – январь, февраль, март – надо считать за 90 дней?
– Очевидно.
– Позвольте к вопросу вашей головоломки присоединить ещё один, – сказал профессор. – А именно: сколько в том же квартале года было таких вечеров, когда кружковых занятий в школе вовсе не происходило?
– Ага, понимаю! – раздался возглас. – Задача с подвохом. Ни одного дня не будет больше с 5 кружками и ни одного дня без всяких кружков. Это уж ясно!
– Почему? – спросил председатель.
– Объяснить не могу, но чувствую, что отгадчика хотят поймать впросак.
– Ну, это не довод. Вечером выяснится, правильно ли ваше предчувствие. За вами очередь, товарищ!
– Двое считали в течение часа всех, кто проходил мимо них на тротуаре. Один стоял у ворот дома, другой прохаживался взад и вперёд по тротуару. Кто насчитал больше прохожих?
– Идя, больше насчитаешь, ясное дело, – донеслось с другого конца стола.
– Ответ узнаем за ужином, – объявил председатель. – Следующий!
– То, о чём я скажу, происходило в 1932 году. Мне было тогда ровно столько лет, сколько выражают последние две цифры года моего рождения. Когда я об этом соотношении рассказал деду, он удивил меня заявлением, что с его возрастом выходит то же самое. Мне это показалось невозможным…
– Разумеется, невозможно, – вставил чей-то голос.
– Представьте, что вполне возможно. Дед доказал мне это. Сколько же лет было каждому из нас?
Рис. 3. «Продаю железнодорожные билеты»
– Я – железнодорожная кассирша, продаю билеты, – начала следующая участница игры. – Многим это кажется очень простым делом. Не подозревают, с каким большим числом билетов приходится иметь дело кассиру даже маленькой станции. Ведь необходимо, чтобы пассажиры могли получить билеты от данной станции до любой другой на той же дороге, притом в обоих направлениях. Я служу на дороге с 25 станциями. Сколько же, по-вашему, различных образцов билетов заготовлено железной дорогой для всех её касс?
– Ваша очередь, товарищ лётчик, – провозгласил председатель.
– Из Ленинграда вылетел прямо на север дирижабль. Пролетев в северном направлении 500 км, он повернул на восток. Пролетев в эту сторону 500 км, дирижабль сделал новый поворот – на юг и прошёл в южном направлении 500 км. Затем он повернул на запад и, пролетев 500 км, опустился на землю. Спрашивается: где расположено место спуска дирижабля относительно Ленинграда – к западу, к востоку, к северу или к югу?
– На простака рассчитываете, – сказал кто-то. – 500 шагов вперёд, 500 вправо, 500 назад да 500 влево – куда придём? Откуда вышли, туда и придём!
– Итак, где, по-вашему, спустился дирижабль?
– На том же ленинградском аэродроме, откуда поднялся. Не так разве?
– Именно не так.
– В таком случае я ничего не понимаю!
– В самом деле, здесь что-то неладно, – вступил в разговор сосед. – Разве дирижабль спустился не в Ленинграде?.. Нельзя ли повторить задачу?
Лётчик охотно исполнил просьбу. Его внимательно выслушали и с недоумением переглянулись.
– Ладно, – объявил председатель. – До ужина успеем подумать об этой задаче, а сейчас будем продолжать.
– Позвольте мне, – сказал очередной загадчик, – взять сюжетом головоломки тот же дирижабль. Что длиннее: дирижабль или его полная тень?
– В этом и вся головоломка?
– Вся.
– Тень, конечно, длиннее дирижабля: ведь лучи солнца расходятся веером, – последовало сразу решение.
– Я бы сказал, – возразил кто-то, – что, напротив, лучи солнца параллельны; тень и дирижабль одной длины.
– Что вы? Разве не случалось вам видеть расходящиеся лучи от спрятанного за облаком солнца? Тогда можно воочию убедиться, как сильно расходятся солнечные лучи. Тень дирижабля должна быть значительно больше дирижабля, как тень облака больше самого облака.
Рис. 4. Расходящиеся лучи от спрятанного за облаком солнца
– Почему же обычно принимают, что лучи солнца параллельны? Моряки, астрономы – все так считают…
Председатель не дал спору разгореться и предоставил слово следующему загадчику.
Очередной оратор высыпал на стол все спички из коробка и стал распределять их в три кучки.
– Костёр собираетесь раскладывать? – шутили слушатели.
– Головоломка, – объяснил загадчик, – будет со спичками. Вот их три неравные кучки. Во всех вместе 48 штук. Сколько в каждой, я вам не сообщаю. Зато отметьте следующее: если из первой кучи я переложу во вторую столько спичек, сколько в этой второй куче имелось, затем из второй в третью переложу столько, сколько в этой третьей перед тем будет находиться, и, наконец, из третьей переложу в первую столько спичек, сколько в этой первой куче будет тогда иметься, – если, говорю, всё это проделать, то число спичек во всех кучках станет одинаково. Сколько же было в каждой кучке первоначально?
– Головоломка эта, – начал сосед последнего загадчика, – напоминает задачу, которую давно как-то задал мне деревенский математик. Это был целый рассказ, довольно забавный. Повстречал крестьянин в лесу незнакомого старика. Разговорились. Старик внимательно оглядел крестьянина и сказал:
– Известен мне в леску этом пенёчек один удивительный. Очень в нужде помогает.
– Как помогает? Вылечивает?
– Лечить не лечит, а деньги удваивает. Положишь под него кошель с деньгами, досчитаешь до ста – и готово: деньги, какие были в кошельке, удвоились. Такое свойство имеет. Замечательный пень!
– Вот бы мне испробовать, – мечтательно сказал крестьянин.
– Это можно. Отчего же? Заплатить только надо.
– Кому платить? И много ли?
– Тому платить, кто дорогу укажет. Мне, значит. А много ли, о том особый разговор.
Стали торговаться. Узнав, что у крестьянина в кошельке денег мало, старик согласился получать после каждого удвоения по 1 руб. 20 коп. На том и порешили.
Старик повёл крестьянина в глубь леса, долго бродил с ним и наконец разыскал в кустах старый, покрытый мохом еловый пень. Взяв из рук крестьянина кошелёк, он засунул его между корнями пня. Досчитали до ста. Старик снова стал шарить и возиться у основания пня, наконец извлёк оттуда кошелёк и подал крестьянину.
Заглянул крестьянин в кошелёк, и что же? – деньги в самом деле удвоились! Отсчитал из них старику обещанные 1 руб. 20 коп. и попросил засунуть кошелёк вторично под чудодейственный пень.
Рис. 5. Старик повёл крестьянина в глубь леса
Снова досчитали до ста, снова старик стал возиться в кустах у пня, и снова совершилось диво: деньги в кошельке удвоились. Старик вторично получил из кошелька обусловленные 1 руб. 20 коп.
В третий раз спрятали кошель под пень. Деньги удвоились и на этот раз. Но когда крестьянин уплатил старику обещанное вознаграждение, в кошельке не осталось больше ни одной копейки. Бедняга потерял на этой комбинации все свои деньги. Удваивать дальше было уже нечего, и крестьянин уныло побрёл из лесу.
Секрет волшебного удвоения денег вам, конечно, ясен: старик недаром, отыскивая кошелёк, мешкал в зарослях у пня. Но можете ли вы ответить на другой вопрос: сколько было у крестьянина денег до злополучных опытов с коварным пнём?
– Я, товарищи, языковед, от всякой математики далёк, – начал пожилой человек, которому пришёл черёд задавать головоломку. – Не ждите от меня поэтому математической задачи. Могу только предложить вопрос из знакомой мне области. Разрешите задать календарную головоломку?
– Просим!
– Двенадцатый месяц называется у нас «декабрь». А вы знаете, что, собственно, значит «декабрь»? Слово это происходит от греческого слова «дека» – десять, отсюда также слова «декалитр» – 10 литров, «декада» – 10 дней и др. Выходит, что месяц декабрь носит название «десятый». Чем объяснить такое несоответствие?
– Ну, теперь осталась только одна головоломка, – произнёс председатель.
– Мне приходится выступать последним, двенадцатым. Для разнообразия покажу вам арифметический фокус и попрошу раскрыть его секрет. Пусть кто-нибудь из вас, хотя бы вы, товарищ председатель, напишет на бумажке, тайно от меня, любое трёхзначное число.
– Могут быть и нули в этом числе?
– Не ставлю никаких ограничений. Любое трёхзначное число, какое пожелаете.
– Написал. Что теперь?
– Припишите к нему это же число ещё раз. У вас получится, конечно, шестизначное число.
– Есть. Шестизначное число.
– Передайте бумажку соседу, что сидит подальше от меня. А он пусть разделит это шестизначное число на 7.
– Легко сказать: разделить на 7! Может, и не разделится.
Премиум
О проекте
О подписке