В качестве своеобразной «компенсации» за модель L*a*b, удобную для компьютеров и неудобную для людей, мир компьютерной графики включает модель HSB, которая, наоборот, удобна для людей и неудобна для вычислений. Поэтому, как правило, модель HSB используется как своеобразный «интерфейс» в тех случаях, когда выбор или редактирование цвета важно представить максимально наглядно.
Разработанная для каталогизации цветов, модель HSB не привязана к каким-нибудь реальным процессам, в ней не используется разделение цвета на основные компоненты. Вместо этого модель HSB разделяет цвет на простые и понятные составляющие: hue (оттенок цвета), saturation (насыщенность цвета) и brightness (яркость). Таким образом, редактирование и выбор цвета становятся простыми и понятными интуитивно.
На рис. 2.4 приведены схемы записи цветов в цветовой модели HSB – цветной (дублируется на цветной вклейке книги) и схематический вариант.
Рис. 2.4. Схема цветовой модели HSB
Координата H (оттенок цвета) представлена в модели HSB как «закольцованная» полоска спектра, или радуги – с небольшой вольностью в виде превращения лилового опять в красный. Оттенок цвета является как бы базовой характеристикой, которая потом корректируется изменением насыщенности и яркости цвета. С помощью этой системы намного легче подобрать сходные по яркости или по насыщенности цвета: требуется изменять только один параметр цвета, а не все одновременно.
Записываются значения координат в различных формах. В некоторых случаях все три параметра измеряются в «компьютерной» традиции – от 0 до 255. Иногда замкнутая в «кольцо» полоска спектра записывается в градусах, от 0 до 359 (как бы положение цвета на цветовом круге или кольце), а яркость и насыщенность измеряются в процентах от 0 до 100. Выбор системы измерения зависит в первую очередь от удобства ее использования в данном конкретном случае.
Кроме названия HSB, можно встретить ту же цветовую модель под названиями HSL или HLS. В этом случае вместо слова «brightness» (яркость) используются слова «luminosity» (свечение) или «lightness» (светлота), которые, впрочем, означают практически то же самое.
В тех случаях, когда мы работаем с черно-белым изображением и информации о цвете нет или же ее можно не сохранять, мы можем использовать цветовой режим Grayscale (Оттенки серого), в котором сохраняется только информация о яркости изображения.
В большинстве случаев информация о яркости записывается в диапазоне от 0 до 255 – такого диапазона значений достаточно, чтобы соседние яркостные оттенки практически не различались глазом и разницы между яркостью номер 133 и яркостью номер 134 обычный человек заметить не мог. Не случайно во многих полноцветных цветовых моделях каждый компонент записывается в диапазоне от 0 до 255: этого достаточно, чтобы интервал яркости или интенсивности выглядел непрерывным.
На рис. 2.5 (дублируется на цветной вклейке книги) приведен пример цветного изображения и изображения, преобразованного в режим Grayscale (Оттенки серого).
Рис. 2.5. Полноцветное изображение (слева) и изображение в режиме Grayscale (Оттенки серого) (справа)
Соответственно, для записи яркости требуется меньше информации, что позволяет уменьшить объем файла и экономнее потреблять ресурсы компьютера.
Изображения в режиме Grayscale (Оттенки серого) используются при подготовке черно-белых полиграфических изданий (газет, книг) и в некоторых случаях – при оформлении веб-страниц.
При необходимости уменьшить объем файла и в то же время сохранить информацию о цвете можно прибегнуть к режиму Indexed Color (Индексированный цвет). Как и режим Grayscale (Оттенки серого), режим индексированного цвета позволяет сохранить до 256 отдельных оттенков – но на этот раз не фиксированных значений яркости, а любых цветов. Во многих случаях количество цветов еще уменьшают: режим Indexed Color (Индексированный цвет) позволяет сохранить от 2 до 256 цветов в изображении.
Индексированным цвет называется потому, что к каждому файлу этого режима прилагается как бы «оглавление» («index» по-английски). В специальной цветовой таблице сохраняется информация о том, какие именно цвета задействованы в изображении, а при сохранении самого изображения просто используется «ссылка» на нужный цвет в цветовой таблице. Таким образом, не нужно каждый раз сохранять полную информацию о цвете, находящемся в изображении. Единожды занеся его в таблицу, в дальнейшем мы можем указывать этот цвет как «цвет № 25» или «цвет № 187».
На рис. 2.6 (дублируется на цветной вклейке книги) приведен пример простого изображения с небольшим количеством цветов, идеально подходящего для преобразования в режим индексированного цвета. Дополнительно на рисунке показан шестнадцатицветный индекс изображения – то есть цвета, использованные для его описания.
Рис. 2.6. Изображение с индексированным цветом (слева) и окно программы Adobe Photoshop, отображающее использованные цвета (справа)
Использовать режим индексированного цвета особенно актуально, когда в нашем изображении задействована не вся цветовая гамма – как на примере, показанном на рис. 2.6, слева. Если в изображении много разных оттенков, то при преобразовании в режим индексированного цвета часть из них придется «потерять», что снизит качество изображения и разница между соседними оттенками будет бросаться в глаза. На рис. 2.7 приведено изображение с большим количеством плавных цветовых переходов, которые не позволяют преобразовать изображение в индексированный цвет без потери в качестве.
Рис. 2.7. Полноцветное изображение (слева) и изображение в режиме индексированного цвета (справа)
Чтобы компенсировать искажения цвета, используют специальную технику под названием «Dithering» (смешение). Она выполняется графическими программами автоматически при преобразовании изображений в другие цветовые режимы (с малым количеством цветов), и суть ее в том, что пикселы разных цветов «перемешиваются» для имитации недостающих промежуточных оттенков. Это позволяет до некоторой степени сгладить и замаскировать резкие смены оттенков (рис. 2.8).
Рис. 2.8. Полноцветный рисунок (слева), рисунок в режиме индексированного цвета без использования смешения (в центре) и с использованием смешения (справа)
Изображения с индексированными цветами широко применяются в Интернете: один из двух наиболее распространенных форматов изображений в веб-графике (формат GIF89a) является форматом с индексацией цветов.
Самый простой и примитивный цветовой режим – Monochrome (Монохромный), в котором используются только два цвета. Название «монохромный» предполагает один цвет (mono – «один», chroma – «цвет»), но второй – это как бы «фон», на котором мы рисуем одним цветом. Обычно используются черный и белый цвета, но иногда можно встретить и другие комбинации.
Примечание
В Adobe Photoshop мы не найдем цветового режима под названием «Monochrome», он будет называться «Bitmap» (битовая карта) – это потому, что для записи информации о каждом пикселе достаточно одного бита информации.
В монохромном режиме можно сохранять чертежи, схемы, текстовую информацию, рисунки в технике графики – словом, все изображения, в которых не требуется высокого качества и которые нужно уменьшить в объеме (рис. 2.9).
Рис. 2.9. Монохромные изображения
При преобразовании в монохромный режим нужно использовать dithering (смешение цветов) для имитации оттенков. Без смешения результат будет не только некрасивым, но и, возможно, неузнаваемым. При смешении можно достичь не только узнаваемого, но и оригинально выглядящего изображения (рис. 2.10).
Рис. 2.10. Монохромное изображение без использования смешения (слева) и с использованием смешения (справа)
Значение монохромных изображений очень велико, но они важны не для дизайнера, а для процесса печати. Струйные и лазерные принтеры, типографии используют монохромную печать (краску или тонер нельзя осветлить и сделать серой), и, посмотрев на страницу с распечатанным изображением, легко заметить, что оно складывается из белых и черных точек. При этом используются разные техники получения промежуточных оттенков, не совпадающие с техникой смешения цветов, предлагаемой Photoshop, однако принцип сохраняется тот же.
• Физический размер изображения
• Логический размер изображения
• Разрешение
Чтобы понимать принципы работы с растровой графикой, важно разобраться в размерах изображения – не менее важно, чем знать теорию цвета. Точно так же как неполноцветное изображение ограничивает нас в выразительных средствах и иногда не позволяет полностью передать все нюансы рисунка, малый размер изображения не позволит нам передать мелкие детали рисунка или помешает использовать его в большом размере.
Осложняет дело и то, что у растрового изображения есть два разных размера. С одной стороны, на экране монитора или на листе бумаги изображение можно измерить линейкой и получить размер в сантиметрах. С другой стороны, существует размер в пикселах – он определяет количество пикселов в изображении.
Размер в пикселах принято называть физическим размером изображения. Это твердая, незыблемая величина, которая достаточно точно описывает изображение, такой размер является абсолютным.
Размер в сантиметрах, миллиметрах и других линейных единицах измерения принято называть логическим размером, поскольку он описывает только сиюминутное состояние изображения – тот размер, с которым его сейчас вывели на экран монитора или на печать, и это размер относительный.
Оба размера связаны между собой третьей величиной, которая именуется разрешением.
Физический размер изображения – это количество пикселов в изображении по ширине и по высоте. Таким образом, мы получаем размеры изображения в пикселах.
Чем больше пикселов в изображении и чем больше его физический размер, тем выше может быть качество изображения. При большем количестве пикселов мы можем сохранить более мелкие детали изображения, которые были бы не видны при меньшем количестве. Поскольку пиксел является наименьшей деталью изображения, детали размером меньше 1 пиксела не могут быть сохранены в изображении.
На рис. 3.1 показаны два изображения с разными физическими размерами, и можно видеть, как в изображении меньшего размера исчезают мелкие детали.
Рис. 3.1. Растровое изображение размером 55 × 60 пикселов (слева) и 550 × 600 пикселов (справа)
О проекте
О подписке