Читать книгу «Апология математики (сборник статей)» онлайн полностью📖 — В. А. Успенского — MyBook.







 









Проиллюстрирую сказанное примером. Всем известно, что Земля – шар. Те, кто получил некоторое образование, знают, что Земля – эллипсоид вращения, сдавленный у полюсов. Геодезисты уточнят, что Земля – геоид, иначе говоря, геометрическая фигура, поверхность которой совпадает с поверхностью Земли без учёта таких мелких деталей, как горы и т. п. (более точно, совпадает с той поверхностью, которую образовывал бы Мировой океан, если бы все материки и острова были бы залиты водой или, ещё более точно, были бы срезаны по уровню Мирового океана). Мы имеем здесь три математические модели, с возрастающей точностью описывающие моделируемый ими объект – форму планеты Земля. Важнейшая из этих моделей – первая, она же самая неточная. Хотя для прокладки авиамаршрутов нужна, возможно, и вторая, а для запуска баллистических ракет – даже третья.

Полное понимание реального строения окружающей нас Вселенной вряд ли когда-либо будет достигнуто. Однако именно математические модели приближают нас к такому пониманию и – это главное – объясняют, каким это строение может быть. А ведь если вдуматься, то понимание некоторых сторон устройства пространственно-временнóго континуума (а может, вовсе и не континуума, а чего-то дискретного) существенно для выживания человечества или, точнее, того, во что превратится человечество в далёком будущем.

Роль математической модели для представителя гуманитарной науки можно сравнить с ролью скелета для художника, рисующего человека. Художник не изображает скелет, скелет скрыт и от него, и от зрителя, но, чтобы грамотно изобразить человеческую фигуру, полезно представить её себе в виде скелета, обросшего плотью.

Так, гениальный математик Андрей Колмогоров очертил скелет понятия падежа, указав, в частности, основные исходные представления, необходимые для образования этого понятия (представления о синтаксически правильной фразе, о состоянии предмета, о выражении состояний предмета контекстами и т. п.). Гениальный лингвист Андрей Зализняк обрастил этот скелет лингвистической плотью в своём знаменитом трактате «Русское именное словоизменение».

Тут самое время заметить, что скелеты представляют интерес главным образом для анатомов. И при всей пользе, которую художники могут извлечь из рисования скелетов, на картинах скелеты всё-таки изображают обросшими плотью.

В качестве поучительного отступления перескажу свой разговор с Ираклием Луарсабовичем Андрониковым. Я спросил, как ему удаётся не просто сымитировать звучание голоса, но добиться портретного сходства с героями своих рассказов. Главное, объяснил он, ухватить и воспроизвести мимику, раз уж сходство геометрической формы недостижимо.

XII

Из только что сказанного как будто напрашивается вывод, что главная цель обучения гуманитариев математике состоит в том, чтобы познакомить их с математическими моделями или хотя бы заложить фундамент для такого знакомства. Однако это не так.

Главная цель обучения гуманитариев математике лежит в области психологии. Эта цель заключается не столько в сообщении знаний и даже не столько в обучении методу, сколько в изменении – нет, не в изменении, а в расширении психологии обучающегося, в привитии ему строгой дисциплины мышления. (Слово «дисциплина» понимается здесь, разумеется, не в значении 'учебный предмет', а в смысле приверженности к порядку и способности следовать этому порядку.) Как сказал Ломоносов, «математику уже за то любить стоит, что она ум в порядок приводит».

Помимо дисциплины мышления я бы назвал ещё три важнейших умения, выработке которых должны способствовать математические занятия. Перечисляю их в порядке возрастания важности: первое – это умение отличать истину от лжи (понимаемой в объяснённом выше объективном, математическом смысле, т. е. без ссылки на намерение обмануть); второе – это умение отличать смысл от бессмыслицы; третье – это умение отличать понятное от непонятного.

Вливание элементов математической психологии в сознание гуманитариев (недруги такого вливания назвали бы его индоктринизацией, а то и интоксикацией) может осуществляться как в прямой форме – путём обучения в классах и аудиториях, так и в форме косвенной – путём проведения совместных исследований, участия математиков в проводимых гуманитариями семинарах и т. п.

К косвенным формам влияния относятся даже вопросы, задаваемые математиками на лекциях на гуманитарные темы. Здесь на память приходит известный случай из истории психологии. В конце XIX в. в одной из больших аудиторий Московского университета была объявлена лекция на тему «Есть ли интеллект у животных?». Просветиться собралось несколько десятков, а то и сотен слушателей. Председательствовал заслуженный ординарный профессор математики Московского университета Николай Васильевич Бугаев – президент Московского математического общества (с 1891 по 1903 г.) и отец Андрея Белого. Перед началом доклада он обратился к аудитории с вопросом, знает ли кто-либо, что такое интеллект. Ответ оказался отрицательным. Тогда Бугаев объявил: поскольку никто из присутствующих не знает, что такое интеллект, лекция о том, есть ли он у животных, состояться не может. Это типичный пример косвенного воздействия математического мышления на мышление гуманитарное. Подобные формы воздействия также являются одним из элементов математического образования.

За последние полвека заметно уменьшилось количество непонятных или бессмысленных утверждений в отечественной литературе по языкознанию. Полагаю, что произошло это не без влияния – как прямого, так и главным образом косвенного – математики.

Случается, впрочем, и языковедам поправлять математиков. Наиболее существенную из таких поправок осуществил в отношении математика Фоменко лингвист Зализняк[18].

Разумеется, математики не претендуют на то, чтобы разрешить проблемы, возникающие в гуманитарных науках (хотя, как уже говорилось выше, именно математику Колмогорову принадлежит первое научное определение лингвистического понятия 'падеж'). Но они помогают гуманитариям лучше уяснить суть этих проблем и критически отнестись к попыткам их решения.

Роль математики в подготовке гуманитариев можно сравнить с ролью строевой подготовки в обучении воина. Все эти ружейные артикулы, повороты, строевой шаг и иные движения, которым обучают молодого бойца, вряд ли находят применение в реальном бою. Но во всех армиях мира они рассматриваются как необходимая основа всякого военного обучения, поскольку приучают выполнять команды. (Кстати, оперирование с математическими алгоритмами также приучает выполнять команды. «Сначала я вам скажу, чтó я делаю, а [только] потом объясню зачем» – это программное заявление содержится в одной из книг по методике математики.)

Строевая подготовка тренирует дисциплину – только не дисциплину мышления, как это делает математика, а дисциплину действий.

Другая аналогия – тренировка моряков на парусных судах. Не знаю, как сейчас, но во времена моей молодости всякий, кто обучался в гражданских мореходных вузах, в обязательном порядке проходил плавание на парусниках – и это при том, что применять полученные навыки хождения под парусом впоследствии ему вроде бы не приходилось. Тем не менее обучение этим навыкам считалось (а может быть, и считается до сих пор) необходимой частью морской подготовки, необходимым тренингом. Сходным тренингом – тренингом мышления, наведением порядка в мозговых извилинах – служат занятия математикой.

XIII

Спросите «человека с улицы», в чём состоит аксиома о параллельных прямых и в чём заключается открытие Лобачевского. Эксперимент показывает, что на первый вопрос ответ будет в большинстве случаев таким (причём и в России, и в Америке): аксиома состоит в том, что параллельные прямые не пересекаются. А в ответ на второй вопрос вам, скорее всего, скажут: Лобачевский доказал, что параллельные прямые пересекаются. При этом отвечающий, как правило, знает, что прямые называются параллельными, если они лежат в одной плоскости и не пересекаются. В значительном числе случаев ответившего можно убедить в ошибочности обоих ответов. В случае вопроса об аксиоме многие (но не все!) понимают, что коль скоро слово «параллельные» – это синонимичное название для непересекающихся прямых, то объявлять непересекаемость параллельных аксиомой довольно бессмысленно. (Это всё равно как объявить такую аксиому: «Всякий красный предмет является красным». Впрочем, ощутимое количество людей не имеют ничего против такой аксиомы.) Что до открытия Лобачевского, то, в чём бы оно ни состояло, ясно, что прямые линии, называемые параллельными, пересечься не могут.

Вопрос про аксиому о параллельных прямых не является, разумеется, вопросом на испытание памяти. Точно так же вопрос об открытии Лобачевского не является вопросом на проверку эрудиции. Оба вопроса – на понимание смысла делаемых утверждений. Строго говоря, вся ситуация лежит здесь не в сфере математики, а в сфере упоминавшейся выше логики русского или иного естественного языка. И это довольно типично: значительная часть того, что происходит на уроках математики для гуманитариев, как раз и должна, по нашему разумению, состоять в обсуждении этой логики, а отчасти и в обучении ей. Математики впитывают семантику неосознанно, поскольку занятия математикой невозможны без чётко сформулированных утверждений. Столь же неосознанно у гуманитариев семантика размывается – не без влияния расплывчатых текстов гуманитарных наук. (И для гуманитария такая размытость семантики зачастую необходима.)

Диалог математика с гуманитарием о параллельных прямых мы считали бы полезным и поучительным для обеих сторон. Вот ещё пример такого полезного и поучительного диалога:

Математик. Возьмём прямую линию и точку на ней. Существует ли на этой прямой точка, ближайшая к нашей точке и лежащая справа от неё?

Гуманитарий. Да, существует.

Математик. Вы не возражаете, если исходную точку мы обозначим буквой А, а ближайшую к ней справа буквой В?

Гуманитарий. Не возражаю.

Математик. Вы согласны с тем, что любые две различные точки можно соединить отрезком?

Гуманитарий. Согласен.

Математик. Значит, можно соединить точки А и В и получить отрезок АВ. Правильно?

Гуманитарий. Правильно.

Математик. А согласны ли вы с тем, что всякий отрезок имеет середину?

Гуманитарий. Согласен.

Математик. Значит, и у отрезка АВ есть середина. Но ведь эта середина явно ближе к точке А, чем точка В. Меж тем точка В – ближайшая к А. Как быть?

(Гуманитарий не знает, что сказать.)

Математик. Я лишь хотел обратить ваше внимание, что не могут одновременно быть истинными все три утверждения о существованиях: «Для всякого отрезка существует его середина», «Любые две различные точки можно соединить отрезком» и «Для точки на прямой линии существует ближайшая к ней точка справа».

Надо признать, впрочем, что ответ «Да, существует» на вопрос о ближайшей точке даётся хотя и весьма часто, но всё же реже, чем приведённые выше ответы о сущности аксиомы о параллельных и открытии Лобачевского.

Результатом диалога о ближайшей точке должно стать отнюдь не только уяснение гуманитарием того, что для данной точки не существует ближайшей к ней точки справа; несуществование такой точки – это, в конце концов, всего лишь математический факт. Не менее, а скорее даже более важным является уяснение математиком тех деталей психологии гуманитария, которая заставляет его считать, что такая точка существует.

Дело в том, что представление о 'ближайшем' формируется у гуманитария (как и у всякого человека) не на основе изучения такого сложного образования, как континуум точек на прямой, а на основе наблюдений материальных предметов окружающего мира. Наблюдение же, скажем, окон дома или кресел в театральном зале не оставляет сомнений в наличии ближайшего справа окна или кресла. (Предвидя ехидное возражение мелочного педанта, прибавим: если только исходное окно или кресло не является крайним.)

Из сказанного можно сделать такое заключение: наш пример с ближайшей точкой есть конкретное проявление некой общей трудности, имеющей философский характер. Трудность состоит в следующем. Математика изучает идеальные сущности (каковыми являются, в частности, точки), но обращается с ними, как если бы они были реальными предметами физического мира (например, применяет к точкам понятие 'ближайший'). Но в таком случае математик обязан отдавать себе отчёт в том, что подобный квазиматериальный подход к абстракциям, если не сделать специальных оговорок, влечёт за собой перенесение на эти абстракции шлейфа представлений, которые абстракциям не свойственны, а заимствуются из обращения с физическими предметами.

Что до упомянутых «специальных оговорок», они делаются явно, а подсознательно впитываются математиками в процессе их обучения. В случае точек на прямой указанный шлейф включает в себя представление о точках на прямой как о мельчайших бусинах, нанизанных на натянутую нить. Разумеется, в рамках такого представления естественно предполагать наличие ближайшей точки и даже быть уверенным в её наличии.

Порядок точек на прямой является в математической терминологии плотным порядком; термин «плотный» означает, что для любых двух участвующих в этом упорядочении объектов, каковыми в данном случае служат точки прямой, найдётся объект (в данном случае точка) между ними. В окружающем нас материальном мире плотных порядков не встречается.

Вот другой пример на ту же тему. Одной из математических абстракций является пустое множество. Само понятие 'множество', подобно понятию 'натуральное число', представляет собой одно из первичных, неопределяемых математических понятий, познаваемых из примеров. Синонимом математического термина «множество» является слово «совокупность»; объекты, входящие в какую-либо совокупность, она же множество, называются её (соответственно его) элементами.

Слово «множество» может навести на мысль, что в множестве должно быть много элементов, тем более что главное, общеупотребительное значение этого слова действительно выражает данную мысль, как, например, во фразе «Можно указать множество причин…». Эта ложная мысль разрушается уже заявлением, что «множество» (в математическом смысле) и «совокупность» суть синонимы: ведь количество элементов в совокупности может быть и малым. Заметим, кстати, что переводы термина «множество» на французский (ensemble) и на английский язык (set) не содержат идеи 'много'.

Зададимся теперь вопросом, может ли совокупность состоять из одного элемента. Математик ответит категорическим «да». Для гуманитария же минимально возможное количество элементов совокупности – это два. Но математики свободно оперируют и пустым множеством, вовсе не содержащим элементов. На занятиях по математике гуманитарии быстро усваивают это понятие (в частности, соглашаются, что пустое множество единственно: пустое множество крокодилов и пустое множество планет – это одно и то же множество).

Для математика наименьшим числом, служащим ответом на вопрос «Сколько?», является ноль, для нематематика – один. Скажем, если в зоопарке всего лишь один слон, то число один будет естественным ответом на вопрос «Сколько слонов в этом зоопарке?». Хотя нематематик признает число ноль верным ответом на вопрос «Сколько в этом бассейне крокодилов?» и даже, возможно, сам даст подобный ответ, но всё же он, скорее, ответит: «Да нет тут никаких крокодилов!» И уж точно не задаст вопрос «Сколько?», не спросив предварительно: «Есть ли в этом бассейне крокодилы?» – и только после положительного ответа спросит, сколько их.

Как в примере с точками, так и в примере с пустым множеством общение математика с гуманитарием оказывается более поучительным для первого, потому что заставляет его осознать: он, математик, даже в таких простых, казалось бы, вопросах, ушёл в мир абстрактных сущностей и тем самым удалился от общечеловеческого словоупотребления и образа мыслей.

Поэтому математику негоже с высокомерием относиться к высказываниям гуманитария. Напротив, ему полезно осознать, что он приписывает абстракциям свойства, которые в жизни не встречаются. Заметим, что именно неограниченное, а потому незаконное перенесение на математические абстракции слов и смыслов, заимствованных из реальной жизни, и приводит в конце концов к математическим парадоксам, а именно к так называемым парадоксам теории множеств. Эти парадоксы появляются там, где с чрезвычайно высокими абстракциями начинают обращаться как с реальными предметами.

Заметим, что ту же, по существу, природу – природу незаконного перенесения – имеют и парадоксы, которые окрестили логическими, хотя правильнее было бы называть их лингвистическими.

1
...