Читать книгу «Апология математики (сборник статей)» онлайн полностью📖 — В. А. Успенского — MyBook.
image

Математическое и гуманитарное: преодоление барьера

Поверх барьеров.

Борис Пастернак


Уточняйте значения слов. Тогда человечество избавится от большей части своих заблуждений.

Рене Декарт


«Да, мой голубчик, – ухо вянет:

Такую, право, порешь чушь!»

И в глазках крошечных проглянет

Математическая сушь.

Андрей Белый. Первое свидание


Чем дальше, тем Белому становилось яснее… что искусство и философия требуют примирения с точными знаниями – «иначе и жить нельзя». ‹…› Недаром прежде, чем поступить на филологический факультет, он окончил математический.

Владислав Ходасевич

I

Никто не знает, сохранят ли грядущие века и тысячелетия сегодняшнее деление наук на естественные и гуманитарные. Но даже и сегодня безоговорочное отнесение математики к естественным наукам вызывает серьёзные возражения. Естественно-научная, прежде всего физическая, составляющая математики очевидна, и нередко приходится слышать, что математика – это часть физики, поскольку она, математика, описывает свойства внешнего, физического мира. Но с тем же успехом её можно считать частью психологии, поскольку изучаемые в ней абстракции суть явления нашего мышления, а значит, должны проходить по ведомству психологии. Не менее очевидна и логическая, приближающаяся к философской, составляющая математики. Скажем, знаменитую теорему Гёделя о неполноте, гласящую, что, какие способы доказывания ни установи, всегда найдётся истинное, но не доказуемое утверждение – причём даже среди утверждений о таких, казалось бы, простых объектах, как натуральные числа, – эту теорему с полным основанием можно считать теоремой теории познания.

В 1950-х гг. по возвращении с индийских научных конференций мои московские коллеги-математики с изумлением рассказывали, что в Индии математику – при стандартном разделении наук на естественные и гуманитарные – относят к наукам гуманитарным. И на этих конференциях им приходилось сидеть рядом не с физиками, как они привыкли, а с искусствоведами. К великому сожалению, у людей гуманитарно ориентированных математика нередко вызывает отторжение, а то и отвращение. Неуклюжее (и по содержанию, и по форме) преподавание математики в средней школе немало тому способствует.

Лет сорок назад было модно подчёркивать разницу между так называемыми физиками (к коим относили и математиков) и так называемыми лириками (к коим причисляли всех гуманитариев). Терминология эта вошла тогда в моду с лёгкой руки поэта Бориса Слуцкого, провозгласившего в 1959 г. в культовом стихотворении «Физики и лирики»:

 
Что-то физики в почёте,
Что-то лирики в загоне.
Дело не в сухом расчёте,
Дело в мировом законе.
 

Однако само противопоставление условных физиков условным лирикам вовсе не было вечным. По преданию, на воротах знаменитой Академии Платона была надпись: «Негеометр [нематематик. – В. У.] да не войдёт сюда!» С другой стороны, самоё математику можно называть младшей сестрой гуманитарной дисциплины юриспруденции: ведь именно в юридической практике Древней Греции, в дебатах на народных собраниях впервые возникло и далее шлифовалось понятие доказательства.

II

Можно ли и нужно ли уничтожать ставшие, увы, традиционными (хотя, как видим, и не столь древние!) границы между гуманитарными, естественными и математическими науками – об этом я не берусь судить. Но вот разрушить барьеры между представителями этих наук, между лириками и физиками, между гуманитариями и математиками – это представляется и привлекательным, и осуществимым. Особенно благородная цель – уничтожить этот барьер внутри отдельно взятой личности, т. е. превратить гуманитария отчасти в математика, а математика – отчасти в гуманитария. Обсуждая эту цель, полезно вспомнить некоторые факты из истории российской науки. Эти факты связаны в обратном хронологическом порядке с именами Колмогорова, Барсова и Ададурова (в другом написании – Адодурова).


Первая научная работа великого математика Андрея Николаевича Колмогорова [12 (25) апреля 1903, Тамбов – 20 октября 1987, Москва] была посвящена отнюдь не математике, а истории. В начале 1920-х гг., будучи семнадцатилетним студентом математического отделения Московского университета, он доложил свою работу на семинаре известного московского историка Сергея Владимировича Бахрушина. Она была опубликована посмертно[7] и чрезвычайно высоко оценена специалистами – в частности, руководителем Новгородской археологической экспедиции Валентином Лаврентьевичем Яниным. Выступая на вечере памяти Колмогорова, состоявшемся в Московском доме учёных 15 декабря 1989 г., он так охарактеризовал историческое исследование Колмогорова: «Эта юношеская работа в русле исторической науки занимает место, до которого её [исторической науки. – В. У.] развитие ещё не докатилось. Будучи опубликованной, она окажется впереди всей исторической науки». А в предисловии к вышеназванному посмертному изданию исторических рукописей Колмогорова В. Л. Янин писал: «Некоторые наблюдения А. Н. Колмогорова способны пролить свет на источники, обнаруженные много десятилетий спустя после того, как он вёл своё юношеское исследование». И там же:

Андрей Николаевич сам неоднократно рассказывал своим ученикам о конце своей «карьеры историка». Когда работа была доложена им в семинаре, руководитель семинара профессор С. В. Бахрушин, одобрив результаты, заметил, однако, что выводы молодого исследователя не могут претендовать на окончательность, так как «в исторической науке каждый вывод должен быть снабжён несколькими доказательствами» (!). Впоследствии, рассказывая об этом, Андрей Николаевич добавлял: «И я решил уйти в науку, в которой для окончательного вывода достаточно одного доказательства». История потеряла гениального исследователя, математика приобрела его.

Двадцать шестого апреля (по старому стилю, а по новому – 7 мая) 1755 г. состоялось торжественное открытие Московского университета. После молебна были сказаны четыре речи. Первая из них – и притом единственная прозвучавшая на русском языке – называлась «О пользе учреждения Московского университета». Произнёс её Антон Алексеевич Барсов [1 (12) марта 1730, Москва – 21 декабря 1791 (1 января 1792), там же]. Неудивительно, что в 1761 г. он был назначен профессором (в современных терминах – заведующим) на кафедру красноречия; вступление в эту должность ознаменовалось его публичной лекцией «О употреблении красноречия в Российской империи», произнесённой 31 января (11 февраля) 1761 г. Чем же занимался Барсов до того? Преподавал математику – именно с Барсова, в феврале 1755 г. специально для этой цели переведённого из Петербурга в Москву, и началось преподавание математики в Московском университете! Впоследствии Барсов прославился трудами по русской грамматике; ему же принадлежит и ряд предложений по русской орфографии, тогда отвергнутых и принятых лишь в XX в. К сожалению, портрет А. А. Барсова не сохранился.

Ещё раньше, в 1727 г., знаменитый математик Даниил Бернулли, работавший в то время в Петербургской академии наук, обратил внимание на студента этой академии Василия Евдокимовича Ададурова [15 (26) марта 1709, Новгород – 5 (16) ноября 1780, Москва]. В письме к известному математику Христиану Гольдбаху от 28 мая 1728 г. Бернулли отмечает значительные математические способности молодого человека и сообщает о сделанном Ададуровым открытии: сумма кубов последовательных натуральных чисел равна квадрату суммы их первых степеней: 13 + 23 +… + п= (1 + 2 +… + п)2. Математические заслуги Ададурова засвидетельствованы включением статьи о нём (с портретом, выполненным в технике силуэта) в биографический раздел однотомного «Математического энциклопедического словаря» (М., 1988). А из статьи «Ададуров» в первом томе «Нового энциклопедического словаря» Брокгауза и Ефрона мы узнаём, что Ададуровым написано несколько сочинений по русскому языку и, более того, что «в 1744 г. ему было поручено преподавать русский язык принцессе Софии, т. е. будущей императрице Екатерине II». Последующие изыскания (они были проведены братом автора этих строк Борисом Андреевичем Успенским) показали, что Ададуров является автором первой русской грамматики на русском же языке, составление каковой следует рассматривать как большое событие. Ведь важнейший этап в языковом сознании носителей какого бы то ни было языка – появление первой грамматики этого языка на том же самом языке; этот этап сравним с осознанием того, что кажущаяся пустота вокруг нас заполнена воздухом. Прибавим ещё, что с 1762 по 1778 г. Ададуров был куратором Московского университета – вторым после основавшего университет И. И. Шувалова.



Итак, даже если согласиться с традиционной классификацией наук, отсюда ещё не следует с неизбежностью аналогичная классификация учёных или учащихся. Приведённые факты показывают, что математик и гуманитарий способны уживаться в одном лице.

Здесь предвидятся два возражения. Прежде всего нам справедливо укажут, что Ададуров, Барсов, Колмогоров были выдающимися личностями, в то время как любые рекомендации должны быть рассчитаны на массовую аудиторию. На это мы ответим, что образцом для подражания – даже массового подражания – как раз и должны быть выдающиеся личности и что примеры Ададурова, Барсова, Колмогорова призваны вдохновлять. Далее нам укажут, опять-таки справедливо, что отнюдь не всем гуманитариям и отнюдь не всем математикам суждено заниматься научной работой, это и невозможно, и не дóлжно. Ну что ж, ответим мы, примеры из жизни больших учёных выбраны просто потому, что история нам их сохранила; сочетать же математический и гуманитарный подход к окружающему миру стоит даже тем гуманитариям и математикам, которые не собираются посвятить себя высокой науке, и это вполне посильная для них задача.

III

По всеобщему признанию, литература и искусство являются частью человеческой культуры. Ценность же математики, как правило, видят в её практических приложениях. Но наличие практических приложений не должно препятствовать тому, чтобы и математика рассматривалась как часть человеческой культуры. Да и сами эти приложения, если брать древнейшие из них – такие, скажем, как использование египетского треугольника (т. е. треугольника со сторонами 3, 4, 5) для построения прямого угла, – также принадлежат общекультурной сокровищнице человечества. (Чьей сокровищнице принадлежит шестигранная форма пчелиных сот, обеспечивающая максимальную вместимость камеры при минимальном расходе воска на строительство её стен, – этот вопрос мы оставляем читателю для размышления.) В Древнем Египте, чтобы получить прямой угол, столь необходимый при строительстве пирамид и храмов, поступали следующим образом. Верёвку делили на 12 равных частей; точки деления, служащие границами между частями, помечали, а концы верёвки связывали. Затем за верёвку брались три человека, удерживая её в трёх точках, отстоящих друг от друга на 3, 4 и 5 частей деления. Далее верёвку натягивали до предела – так, чтобы получился треугольник. По теореме, обратной к теореме Пифагора, треугольник оказывался прямоугольным, причём тот человек, который стоял между частью длины 3 и частью длины 4, оказывался в вершине прямого угла этого треугольника.

Раздел математики, сейчас называемый математическим анализом, в старые годы был известен под названием «дифференциальное и интегральное исчисление». Отнюдь не всем обязательно знать точное определение таких основных понятий этого раздела, как производная и интеграл. Однако каждому образованному человеку желательно иметь представление о производном числе как о мгновенной скорости (а также как об угловом коэффициенте касательной) и об определённом интеграле как о площади (а также как о величине пройденного пути). Поучительно знать и о знаменитых математических проблемах (разумеется, тех из них, которые имеют общедоступные формулировки) – решённых (как проблема Ферма и проблема четырёх красок[8]), ждущих решения (как проблема близнецов[9]) и тех, у которых решения заведомо отсутствуют (из числа задач на геометрическое построение и простейших задач на отыскание алгоритмов). Ясное понимание несуществования чего-либо – чисел ли с заданными свойствами, или способов построения, или алгоритмов – создаёт особый дискурс, который можно было бы назвать культурой невозможного. И культура невозможного, и предпринимаемые математикой попытки познания бесконечного значительно расширяют горизонты мышления.

Всё это, ломая традиционное восприятие математики как сухой цифири, создаёт образ живой области знания, причём живой в двух смыслах: во-первых, связанной с жизнью; во-вторых, развивающейся, т. е. продолжающей активно жить. Всякому любознательному человеку такая область знания должна быть интересна. Вообще, образованность предполагает ведь знакомство не только с тем, что непосредственно используется в профессиональной деятельности, но и с человеческой культурой как таковой, чьей неотъемлемой частью – повторим это ещё раз – является математика.

Здесь возможен следующий упрёк. Хотя в названии настоящего очерка политкорректно говорится о преодолении барьера, изложение явно уклоняется в сторону пропаганды «математического». Автор болезненно относится к такому упрёку и спешит оправдаться. Дело в том, что гуманитарная культура не нуждается в пропаганде: она не только повсеместно признана непременной частью культуры вообще, но часто отождествляется с последней. Отличать ямб от хорея, понимать смысл выражения «всевышней волею Зевеса», а заодно и знать, кто такой Зевес, – все (или по крайней мере большинство) согласны в том, что подобные знания и умения входят в общеобязательный культурный багаж. Включение же в этот багаж чего-то математического в качестве обязательной составной части многим может показаться непривычным и потому нуждается в лоббировании.

IV

Однако образование состоит не только в расширении круга знаний. В неменьшей степени оно подразумевает расширение навыков мышления. Математик и гуманитарий обладают различными стилями мышления, и ознакомление с иным стилем обогащает и того и другого. Скажем, изучение широко распространённого в математике аксиоматического метода, дозволяющего использовать в рассуждениях только ту информацию, которая явно записана в аксиомах, прививает привычку к строгому мышлению. А знакомство со свойствами бесконечных множеств развивает воображение. Потребуются ли когда-нибудь, скажем, историку аксиоматический метод или бесконечные множества? Более чем сомнительно. Но вот строгость мышления и воображение не помешают и ему. С другой стороны, и математику есть чему поучиться у гуманитария. Последний более толерантен к чужому мнению, чем математик, и это говорится здесь в пользу гуманитария (разумеется, имеются в виду некоторые усреднённые – а то и воображаемые автором этих строк – гуманитарий и математик). Математические понятия резко очерчены, тогда как гуманитарные расплывчаты; и как раз эта расплывчивость делает их более адекватными для описания окружающего нас расплывчатого мира, поскольку его явления (или надо сказать «его феномены»?) сами расплывчаты. Математик ведь привык иметь дело с такими утверждениями, каждое из которых либо истинно, либо ложно, и эта привычка поневоле заставляет его видеть мир в чёрно-белом цвете. Его мышление настроено на более высокую контрастность или резкость (не знаю, какое слово здесь правильнее употребить). Ему, в отличие от гуманитария, чужда или непонятна мысль, что истина, может быть, и одна, но вот правда у каждого своя.

Поучительно сравнить между собой методы рассуждений, применяемые в математических и в гуманитарных науках. На самом деле речь идёт здесь о двух типах мышления, и человеку полезно познакомиться с каждым из них. Автор не берётся (потому что не умеет) описать эти типы, но попытается проиллюстрировать на двух примерах своё видение их различия.

Пример первый. Все знают, что такое вода. Это вещество с формулой Н2О. Но тогда то, что мы все пьём, не вода. Разумеется, в повседневной речи и математик, и гуманитарий и то и то называет водой, но в своих теоретических рассуждениях первый как бы тяготеет к тому, чтобы называть водой лишь Н2О, а второй – всё, что имеет вид воды. Потому что математик изучает идеальные объекты, имеющие такой же статус, как, скажем, круги и треугольники, которых нет в реальной природе; гуманитарий же изучает предметы более реалистические. Боюсь, впрочем, что этот пример слишком умозрителен и способен отчасти запутать читателя.