Поставьте перед собой на столе зеркало, положите перед ним лист бумаги и напишите большими печатными буквами слова КОФЕ и ЧАЙ. Взглянув в зеркало, вы увидите, что отражение слова КОФЕ сохранило свое начертание, а буквы слова ЧАЙ перевернулись. Почему так получилось? Дело в том, что слово КОФЕ тоже перевернулось, но его буквы симметричны относительно горизонтальной оси, и их начертание в зеркале не изменяется. Эксперимент наводит на мысль о необходимости рассмотреть подробно понятие симметрии применительно к буквам и словам русского языка, на этом пути открывается много интересного.
Две точки, лежащие на одном перпендикуляре к данной прямой по разные стороны и на одинаковом расстоянии от нее, называются симметричными относительно этой прямой.
Точки А и В называются симметричными относительно оси. Плоская фигура симметрична относительно прямой (оси симметрии), если ее точки попарно обладают указанным свойством.
Фигура симметрична относительно точки (центра симметрии), если её точки попарно лежат на прямых проходящих через центр, по разные стороны и на равных расстояниях от него.
Симметрия не только математическое понятие. Она присутствует во множестве предметов и явлений окружающего мира. Противоположным понятием является асимметрия (отсутствие симметрии). Их взаимодействие проявляется, в частности, в строении человеческого тела: при внешней его симметрии (ноги, руки, уши, глаза) основные внутренние органы (сердце, печень, желудок) не симметричны. Надо же было так придумать!
Применительно к буквам и словам, как графическим изображениям будем рассматривать три вида симметрии: симметрия относительно горизонтальной оси, симметрия относительно вертикальной оси и центральная симметрия. Для изображения букв существуют различные шрифты, отличающиеся друг от друга декоративными элементами. Условимся не брать это во внимание и рассматривать самый простейший вариант написания букв. В некоторых буквах верхние элементы изображаются несколько меньше нижних (В, Е, З, Н, Х, Э) или графически немного изменены (Ж, К) – это различие мы тоже будем игнорировать. В результате за основу можно взять шрифт Arial, отредактировав в сторону упрощения буквы Д и Л.
Рассмотрев предложенный шрифт, можно разделить все буквы на пять различных групп симметрии:
1. симметричные относительно центра;
2. симметричные относительно горизонтальной оси;
3. симметричные относительно вертикальной оси;
4. имеющие все три перечисленные вида симметрии одновременно;
5. не симметричные.
Рисунок показывает, что той или иной симметрией обладают 20 букв из тридцати трех, и только 13 букв асимметричны.
В этом месте нужно бы прервать разговор о буквах и вернуться в основной текст, чтобы плавно войти в создание слов, и только потом говорить о некоторых специфических словах и предложениях, но и прерывать развитие понятия симметрии тоже не хочется. Вот тут-то и не хватает гипертекста.
Переходя от букв к словам мы можем отыскать в них те же виды симметрии. Есть слова, у которых ось симметрии проходит, деля слово пополам. Далее, если к написанному слову приставить справа вертикальное зеркало, то отражение симметричного слова будет полностью совпадать с оригиналом. Аналогично есть слова, которые не изменяются при отражении в горизонтальном зеркале.
Это примеры полной зеркальной симметрии слова.
Основываясь на таблице распределения букв по видам симметрии, можно сделать обобщения:
– относительно горизонтальной оси симметричными будут слова, состоящие из букв В, Е, З, К, С, Э, Ю, Ж, Н, О, Х, Ф;
– относительно вертикальной оси могут быть симметричны слова, состоящие из букв: А, Д, Л, М, П, Т, Ш, Ж, Н, О, Х, Ф.
Во втором утверждении есть оговорка «могут быть», потому что мы иначе нарисовали буквы Д и Л, чем они набираются в тексте и это спорный вопрос. Кроме того, принятая горизонтальная форма письма при вертикальном отражении может давать иные результаты, чем предполагалось. Для уяснения этих фактов рассмотрим несколько конкретных наглядных примеров симметричных слов.
Горизонтальная симметрия никаких неожиданностей не сулит.
Из каких букв составлять эти слова вы теперь знаете и можете экспериментировать сами. Попробуете найти слова более чем из четырех букв, такие, например, как: СНЕЖОК, СЕНОКОС?
При вертикальной симметрии, возможно все: получение точной копии, имеющей смысл анаграммы-оборотня данного слова или вообще бессмыслицы.
В русском языке редкостью являются слова, которые не меняются при повороте на 1800, такие, как местоимение ОНО. В английском языке можно построить целые предложения симметричные относительно поворота на 1800, например: NOW NO SWIMS ON MON (никто не плавает теперь по понедельникам). Снова небольшое допущение: буквы W и M не идеально симметричны, но смысл не нарушают.
Поведем теперь один интересный эксперимент, связанный с зеркальным отражением слов. Напишите на листе прозрачной пленки печатными буквами слово ОТРАЖЕНИЕ. Встав перед настенным зеркалом с этим листком в руках, вы обнаружите неожиданный факт – зеркало не переворачивает это слово! Но в слове ОТРАЖЕНИЕ есть буквы, которые при отражении в зеркале непременно должны перевернуться. Почему же они не переворачиваются?
Чтобы понять секрет, нужно немного усложнить приготовления: вырезать буквы слова ОТРАЖЕНИЕ из цветной бумаги, одна сторона которой, например, красная, а обратная сторона белая, и приклеить их на прозрачную пленку.
Если теперь вы станете перед зеркалом, повернув пленку красными буквами к себе, то увидите в зеркале это же слово, но составленное из белых букв. Поверните пленку тыльной стороной к себе, и вы увидите перевернутое слово, написанное белыми буквами.
Таким образом, в зеркале отражается слово, составленное из уже перевернутых белых букв тыльной стороны надписи. Получается двойное зеркальное переворачивание надписи, но, как известно из математики, (-1)∙(-1)=+1.
На стеклянных дверях магазинов и других учреждений часто можно встретить надписи вход и выход или от себя и к себе. Если читать эти надписи с обратной стороны стекла, то они превращаются в бессмысленный набор знаков. Договориться бы всем людям и ввести новые слова, например, хот – означающее вход или от себя и тох – означающее выход или к себе, благо эти буквосочетания свободны на данный момент. Тогда одну и ту же надпись, написанную на стекле, можно было бы читать с двух сторон. Проявив тем самым экономию в масштабах отдельно взятой страны и оригинальность мышления.
Эта книга пишется с целью приобщить читателей к творческому поиску, моя задача только дать направление, а далее перед вами неисчерпаемые богатства словарного запаса родного языка. Ищите симметричные слова, составляйте из них осмысленные симметричные предложения. Посмотрите симметрию цифр и чисел [?] Тропинка появится, когда по нетронутому лугу пройдет множество людей в одном направлении.
Аки лев велика
Подробно разработанным вопросом является смысловая симметрия слова, когда оно не переворачивается зеркально, а только читается без изменения справа налево, с конца к началу. Подобные слова и предложения носят название палиндромы, иногда они называются по-русски перевертень, перевертыш. Правда последнее слово мы будем использовать для другого явления в языке, о нем речь пойдет ниже.
Перевертень, палиндром, палиндромон (от греч. palíndromos – бегущий обратно), слово, фраза или стих, которые могут читаться (по буквам или по словам) спереди назад и сзади наперёд, давая одинаковый смысл. Художественное качество палиндромов зависит от структурных данных языка: в русском и других европейских языках палиндромы обычно звучат искусственно, тогда как, например, на китайском языке в форме палиндрома написано много высокохудожественных стихотворений.
Палиндромы возможны начиная с трехбуквенных слов: боб, дед, кок, мим, око, пуп, шиш. Хотя среди географических названий есть палиндромы из двух букв, например Аа – река в Германии или река Яя в Сибири. Как видите, это понятие менее строгое, чем зеркальная симметрия: слова боб, пуп – палиндромы, но они не симметричны зеркально. Бывший когда-то популярным шведский ансамбль АВВА, чтобы добиться полной симметрии на некоторых своих афишах писал название, переворачивая вторую букву В по вертикали, тогда получалась полная симметрия:
Вот еще несколько примеров пятибуквенных слов-палиндромов: заказ, довод, кабак, казак, комок, наган, потоп, ротор, топот, шабаш, шалаш. Одно из направлений незавершенных поисков в словарных запасах языка – найти как можно более длинное слово палиндром. Например, слово ротатор состоит из семи букв, а есть ли длиннее в русском языке? Есть иноязычные палиндромы, содержащие 11 букв: KINNIKINNIK (разновидность табака, культивируемого индейцами), OOLOOPOOLOO (одно из австралийских наречий), DETARTRATED (выдуманное слово-неологизм, означающее «очищенный от винной кислоты»).
Палиндромы известны во многих языках (например, gig(кабриолет), eve(канун), level(уровень) – в английском), а их история восходит к временам незапамятным. Древнейший из сохранившихся палиндромов написан по-латыни и возник, насколько известно, в IV веке нашей эры. Это фраза «Sator Arepo tenet opera rotas». Перевод, естественно, палиндромом не является: «Сеятель Арепо с трудом держит колеса». Обычно этот палиндром, состоящий из пяти пятибуквенных слов, записывали в клетках квадрата. Необычные свойства этого квадрата заставляли приписывать ему магическую силу, и в этом просматривается параллель с математическими магическими квадратами. И те, и другие квадраты, вырезанные на пластинках из благородных металлов, носили в качестве амулетов, защищающих от болезней и злых духов; их изображения высекались на стенах храмов и дворцов. Ритуальное значение квадратов обуславливалось «дьявольской» сложностью их образования и темнотой малообразованных людей того времени.
В квадрате с палиндромом его можно прочитать четырьмя способами: по строчкам слева направо и сверху вниз, по строчкам справа налево и снизу вверх, плюс два аналогичных способа по столбцам. Сейчас таким палиндромам, записанным в виде квадратной таблицы и допускающим прочтение четырьмя способами дали название – суперпалиндром. Для квадрата 3×3 известен суперпалиндром Мир или Рим. В математическом магическом квадрате сумма трех чисел по трем строчкам, трем столбцам и двум диагоналям получается одинаковая, равная 15. Как здесь не удивляться, если в хаосе всевозможных размещений букв или цифр, вдруг получается такая гармония. Теперь следите за развитием мысли, мы можем сделать квадрат из букв размером 3×3, а квадрат из цифр размером 5×5.
Только теперь магическая сумма математического квадрата равна 65, а палиндромы составлены из слов русского языка. Вот еще одно нераспаханное поле: составить квадраты 4×4, 5×5 с осмысленной фразой-палиндромом на русском языке.
В дальнейшем палиндромы встречались на предметах цилиндрической или сферической формы в виде надписей, которые можно было читать, вращая предмет в любую сторону. От них пошли замкнутые фигуры или «круговертни».
Эти примеры составил математик А.В. Болтрукевич. Если читать их в направлении по стрелке от указанной буквы, то можно прочитать слова аптека и пакет, пальто и лапоть, Африка и факир.
В. В. Маяковский подарил Л. Ю. Брик кольцо, на внутренней стороне которого по кругу были многозначительно выгравированы ее инициалы Л Ю Б, образующие круговертень ЛЮБЛЮ. Маленький, но многозначительный факт истории.
Палиндромами увлекались люди еще до изобретения кроссвордов и сканвордов, считая, что это занятие развивает чувство слова, умение видеть его в глубину, знать его способности выражать множество оттенков смысла и сочетаться с другими словами.
Дети, которые только учатся читать, часто читают вывески магазинов и учреждений наоборот, им интересно, что при этом получается. Потом дети вырастают и перестают заниматься словесной «ерундой», а жаль.
В последнее десятилетие о палиндромах писали журналы «Наука и жизнь» и «Квант», «Загадочная газета» и «Комсомольская правда», печатая много интересных находок своих читателей. Коллективное творчество дает уникальные результаты. Вот несколько примеров предложений палиндромов. В эпиграф вынесен палиндром, который был популярен в нашей стране в начале XIX века, так возвышенно говорили о России. Теперь находят другие темы.
Ленин ел.
Огонь – лоб больного!
Театр тает.
Искать такси.
Да, искать такси – ад.
Осело колесо.
Леша на полке клопа нашел.
На в лоб, болван!
Я не реву – уверен я.
Любители словесных игр не ограничиваются отдельными предложениями, вот пример короткого сочинения о вопросах питания:
Ел еж желе,
А сыр крыса,
Ишак каши,
А жук ужа.
Ужи жижу,
Ил ели.
Я
Мед ем
И щи.
А щи пища.
Автор Алексей Кашеваров
Примеры палиндромов из классики:
«А роза упала на лапу Азора».
А. А. Фет
«Я разуму уму заря.
Я иду с мечем, судия».
Г. Р. Державин
Море могуче. В тон ему, шумен, отвечу Гомером:
Море, веру буди – ярок, скор, я иду буревером.
Д. Авалиани
«Хорошо. Шорох.
Утро во рту.
И клей елки
Течет».
С. Кирсанов – отрывок стихотворения
У Семена Кирсанова несколько палиндромических стихотворений и интересные размышления на эту тему. На русском языке палиндромы писали В. В. Хлебников, В. Я. Брюсов, И. Л. Сельвинский, А. А. Вознесенский.
Через «Sator Arepo» у нас произошел плавный и незаметный переход от отдельный слов палиндромов к палиндромам предложениям. Пошли фразы, в которых каждое отдельное слово не являлось палиндромом, а предложение в целом, если не обращать внимания на расстановку пробелов, палиндромом было. В математике к понятию палиндрома нужен другой подход, потому что, в отличие от слова, любое число, написанное произвольным набором цифр, имеет смысл, например, 1234567890987654321 – вполне реальное число. Только содержательная сторона, изюминка идеи отражения здесь отсутствует, посмотришь на это число, и скажешь: «Ну, и что?». Можно поставить вопрос так: найти квадраты целых чисел, которые неизменно читаются как слева направо, так и наоборот. Некоторые из них найти легко: 112=121, 1112=12321, 11112=1234321. Все получившиеся числа палиндромы, и данное правило применимо к любому числу единиц, не превосходящему девяти. Есть и другие случаи, но их найти труднее, например 2642=69696, 8362=698896, 22852=5221225. Одним вопросом намечено целое направление для поиска числовых палиндромов с определенным смыслом.
Есть палиндромы и среди кубов, например 113=1331, причем в большинстве случаев, если куб – палиндром, то и кубический корень из него – тоже палиндром. Далее 114=14641. Ожидаемого результата с пятой степенью не получается: 115=161051 – не палиндром. Поиск палиндромов среди пятых степеней, пока не дал результатов. Высказана гипотеза, согласно которой не существует чисел палиндромов вида xk при k>4. Её кому-то нужно доказать или опровергнуть [??]
Попробуйте поискать, поэкспериментировать, используя электронную таблицу Excel в офисном пакете. Там есть встроенная функция степени и таблицу чисел легко вводить методом протягивания. Считать не придется, результат определяется только визуально. Если вы владеете любым простейшим языком программирования типа Basic, то можете запрограммировать и вывод итогового палиндрома, если он найдется, конечно. Работа интересная, в мире столько интересного, делал бы сам, но оставляю вам.
Другой вопрос – сколько существует простых чисел палиндромов. Простыми называются числа, не имеющие делителей кроме единицы и самого себя. Среди первых пятидесяти простых чисел я нашел шесть палиндромов: 11, 101, 131, 151, 181, 191. Сколько их всего – неизвестно! Высказывалось предположение о том, что простых чисел палиндромов бесконечно много, но эта гипотеза пока не доказана [??]
Одна знаменитая гипотеза в теории чисел так и называется «гипотеза о палиндромах», и состоит в следующем. Если взять некоторое многозначное число и к нему прибавить число с переставленными в обратном порядке цифрами, потом то же самое проделать с полученной суммой, то, повторяя эти действия несколько раз, вы непременно получите число-палиндром. Гипотеза утверждает, что независимо от того, какое число выбрано, после конечного числа шагов вы непременно получите палиндром.
Иногда для достижения симметричного результата приходится делать большое число шагов, например, для числа 89 ожидаемый результат получается только после 24-го шага. Существует ли число, которое никогда не приведет к симметричному результату? Это никем еще не доказано! Наименьшее число, с которым еще не ясно – это 196. Математики на компьютерах проделали сотни тысяч шагов, но получить палиндром так и не удалось, хотя никем не доказано, что он никогда не появится [??]. Теперь осуществим переход к математическим предложениям палиндромам, есть ведь и такие в богатом мире математики. Для этого нужно использовать математические действия. Начнем со сложения.
25+63=36+52, 42+35=53+24, 76+34=43+67.
Остальные арифметические действия тоже не отстают:
41-32=23-14, 46-28=82-64, 52-16=61-52.
26×31=13×62, 63×48=84×36, 82×14=41×28.
62:31=26:13, 82:41=28:14, 96:32-69:23.
Показали примеры с двузначными числами, но есть и многозначные палиндромы с математическими действиями. Мир чисел, в отличии от мира слов – бесконечен.
Пример предложения длиннее с использованием всех цифр кроме нуля: 98-76-54+32+1=1+23-45-67+89.
Теперь математическое выражение, которое в целом палиндромом не является, но каждое число этом выражении – палиндром:
2×121×10201=2×112×1012=22×112211=1111×2222=2456542.
Тысячу раз прав был А. С. Пушкин, сказав: «О, сколько нам открытий чудных готовит просвещенья дух…».
Все рассмотренные палиндромы, как отдельные слова, так и предложения, как в русском языке, так и в математике относятся к буквенным и цифровым палиндромам. Если же укрупнить единицу рассмотрения? После буквы идет слог. Существуют слоговые палиндромы, в которых в обратную сторону нужно читать не по буквам, а по слогам. Простейшие из них двуслоговые известны всем: мама, папа баба, дядя, няня. То есть читаем ма-ма и наоборот ма-ма.
Трехслоговые палиндромы: царица, калитка, калека, зараза. В трехслоговых нужно чтобы первый и последний слог совпадали, а средний как бы осевой.
Со слоговыми палиндромами занимаются меньше, чем с буквенными, как-то они остаются в стороне от магистрального буквенного пути. Но есть примеры и предложений, которые являются слоговыми палиндромами. Не спи на спине.
Злободневные выражения: Денег взять негде.
Яму копал кому я? Автор Роман Адрианов.
Не вой на войне.
Вы живы? Автор Сергей Федин.
Еще более ослабляя понятие симметрии, перейдем от смысловой симметрии слов к ритмической симметрии отдельных произведений. Можно сказать, что общим свойством стихотворной речи является симметричность ее построения, основанная на повторяемости составляющих ее элементов: слогов, строк и т. д. Чередование ударных и безударных слогов создает ритм стиха. Прочитайте с выражением строки А. А. Фета, и вы почувствуете эту красоту ритма, хотя здесь нет никаких палиндромов:
Какая грусть! Конец аллеи
Опять с утра исчез в пыли,
Опять серебряные змеи
Через сугробы поползли.
На небе ни клочка лазури,
В степи все гладко, все бело,
Один лишь ворон против бури
Крылами машет тяжело.
Этот стихотворный размер называется ямбом. Если быть точным, то здесь присутствует антисимметрия – понятие более сложное, чем просто симметрия. В школьной математике оно не изучается, но мы его рассмотрим на простом примере. Левая и правая перчатки симметричны, у них есть плоскость симметрии.
О проекте
О подписке