Школьным учителям-предметникам, нужно постоянно помнить о межпредметных связях и на своих уроках стараться показать единство человеческих знаний, а не их разобщенность по отдельным наукам. Например, изучение основ математической теории множеств можно успешно проводить, иллюстрируя введение новых понятий примерами из русского алфавита.
Множество – одно из основных, фундаментальных понятий математики, которое нельзя определить через другие понятия, поэтому его можно только более или менее доходчиво описать. Множество – это любое собрание определенных и различимых между собой объектов мыслимое как единое целое. Эти объекты называются элементами или членами множества. Существенно для понимания, что здесь собрание предметов само рассматривается как один объект. Множество деревьев – это сад или лес, множество учащихся – класс или школа, множество работников предприятия – коллектив, множество птиц – стая. Для обозначения множеств обычно используют большие латинские буквы. Множество может быть конечным, когда конечно число входящих в него элементов. Например, множество букв русского алфавита конечно и состоит из 33 элементов. С другой стороны, множество всевозможных упорядоченных наборов букв бесконечно, если не накладывать ограничений на длину этих наборов.
Конечное множество можно задать простым перечислением его элементов. Для этого принята следующая форма записи: R={а, б, в, г, д, е, ё, ж, з, и, й, к, л, м, н, о, п, р, с, т, у, ф, х, ц, ч, ш, щ, ъ, ы, ь, э, ю, я}.
Так мы задали множество букв русского алфавита. Определим подобным образом еще несколько конечных множеств, состоящих из тех же букв и собранных по некоторым индивидуальным для каждого множества признакам:
G={а, е, ё, и, о, у, ы, э, ю, я},
S={б, в, г, д, ж, з, к, л, м, н, п, р, с, т, ф, х, ц, ч, ш, щ},
P={й},
Z={ъ, ь},
D={б, в, г, д, ж, з, л, м, н, р},
T={к, п, с, т, ф, х, ц, ч, ш, щ},
X={ж, ш, ч, щ}.
Другой способ задания множества – описательный. Нужно сформулировать предложение, которое описывает данное множество так, что его нельзя спутать ни с каким другим и о любом объекте можно точно сказать принадлежит ли он этому множеству или нет. Тогда перечисленные выше множества букв будут определяться так:
G – множество гласных букв русского алфавита,
S – множество согласных букв,
P – множество полугласных букв,
Z – множество букв, которым не соответствует никакого звука в устной речи, иначе говоря – множество знаков,
D – множество звонких согласных,
T – множество глухих согласных,
X – множество шипящих согласных.
Бесконечное множество нельзя задать перечислением всех его элементов, но часто можно описать их свойства. Встречаются и конечные множества с той же степенью неопределенности. Например, до сих пор ученым не удалось расшифровать письменность острова Пасхи. До нас дошли несколько десятков табличек, покрытых рисуночными значками, вырезанными зубом акулы по дереву. Эти письмена аборигены называют кохау ронго-ронго – «говорящее дерево». Множество знаков-иероглифов в письменности острова Пасхи, можно определить этим предложением, но нельзя с уверенностью и точно перечислить, хотя это множество заведомо конечное.
Множества G, S, …, X содержат разное количество элементов и среди них есть одно, для которого используется специальное название. Множество, содержащее единственный элемент называется одноэлементным или единичным множеством. Речь идет о множестве P={й}, которое содержит единственную букву, обозначающую полугласный звук, то есть звук не образующий слога. Можно задать и пустое множество, в котором не содержится ни одного элемента. Так как это множество никак не характеризуется своими отсутствующими элементами, то логично утверждать, что может быть только одно множество, не имеющее элементов. Для его обозначения принят специальный знак Ø.
Отношения между объектами и множествами описываются понятием принадлежности. Для записи этого отношения есть два специальных знака принадлежит и не принадлежит.
означает, что буква а – гласная и является элементом множества гласных букв, то есть принадлежит ему.
означает, что буква а не является согласной и не принадлежит множеству согласных букв. В качестве сокращения можно записывать отношение принадлежности сразу для нескольких элементов:
Отношения между множествами определяются следующими утверждениями.
Два множества равны в том и только в том случае, когда они состоят из одних и тех же элементов. Для обозначения равенства двух множеств применяется обычный знак равно {a, e, o}={e, o, a}. Порядок расположения элементов при их перечислении не важен, он не меняет состава множества.
Соответственно, два неравных множества отличаются, по крайней мере, одним своим элементом (X≠ {ж, ш, ч}).
Если каждый элемент множества А одновременно является элементом множества В, то говорят, что А включено в В или А есть подмножество множества В. Символически записывается:
Выражение В содержит А является синонимом для выражения А включено в В.
Если одновременно выполняются два условия: А включено в В и А≠В, то говорят, что множество А строго включено в В или А есть истинное подмножество множества В
Пустое множество является подмножеством любого другого множества, то есть для любого множества А:
Знак включения как и знаки равенства и принадлежности имеет свое отрицание, которое выражается соответствующим перечеркнутым знаком, означающим, что А не является подмножеством множества В:
Применительно для ранее введенных буквенных множеств можно написать следующие утверждения:
Попробуйте самостоятельно дать им словесную формулировку.
Каждое не пустое множество (А≠Ø) имеет по крайней мере два различных подмножества: само А и Ø. Кроме того, каждый элемент множества А определяет некоторое подмножество множества А. Множество всех подмножеств множества А называется множеством-степенью множества А и обозначается P(А).
Например, если С={у, р, о, к}, то P(С)= {С, {у, р, о}, {у, р, к }, {у, о, к}, {р, о, к}, {у, р}, {у, о}, {у, к}, {р, о}, {р, к}, {о, к}, {у}, {р}, {о}, {к}, Ø }.
Для конечного множества А, состоящего из n элементов, множество-степень P(А) содержит 2n элементов. Действительно, в предыдущем примере мы получили 24=16 элементов.
Множества – это математические объекты и над ними можно выполнять некоторые операции.
Объединением множеств А и В называется множество всех предметов, которые являются элементами множества А или элементами множества В. Обозначается:
Слово или в этом определении имеет не исключающий, а собирательный смысл. Например, если мы объединим множество глухих согласных и множество звонких согласных, то получим множество всех согласных букв:
Справедлива и такая запись:
Пересечением множеств А и В называется множество всех предметов, являющихся элементами обоих множеств А и В одновременно. Обозначается:
Среди звонких согласных есть только одна шипящая, буква – ж, а среди глухих три шипящих, поэтому:
Два множества называются непересекающимися, если у них нет общих элементов:
и пересекающимися, если
Множество гласных букв и множество согласных букв не имеют общих элементов – они непересекающиеся:
Дополнением множества А до множества В называется множество тех элементов множества В, которые не являются элементами множества А. Обозначается:
Дополнением множества глухих согласных до множества всех согласных будет множество звонких согласных:
Теперь попробуйте самостоятельно объяснить словами следующие символические записи и проверьте их правильность:
Для графической иллюстрации отношений, которые могут иметь место между различными множествами, часто используют так называемые диаграммы Венна. На этих диаграммах множества условно изображаются геометрическими фигурами с соблюдением отношений включения, пересечения и т. д.
В наших рассуждениях все рассматриваемые множества являются подмножествами по отношению к множеству всех букв русского алфавита R. В этом случае оно называется универсальным множеством, и его изображаем в виде прямоугольника, а все подмножества входящими в прямоугольник кругами. Непересекающиеся множества изображаются непересекающимися кругами, а включению множеств соответствует изображение одного круга целиком внутри другого. Для букв русского алфавита можно вычертить следующие диаграммы.
На первой диаграмме Венна показаны названия множеств, без состава их элементов, но с соблюдением отношений включения и пересечения. В данном примере самое большое множество, включающее в себя все остальные в качестве подмножеств – это множество всех букв русского алфавита. Далее даем подробную диаграмму без названий множеств, но с изображением конкретного состава элементов каждого из них.
Теперь с целью расширения кругозора и в качестве исходной базы для последующих упражнений введем еще несколько буквенных множеств, основанных на алфавитах других языков. Для простоты изложения будем рассматривать только маленькие (строчные) буквы. Возьмем уже известную нам латиницу L={a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, x, y, z}. Следующее множество А определим как множество букв английского алфавита, а уж вы сами вспомните какие буквы в него входят и сколько их [?]. Еще два множества – алфавиты бывших союзных республик, имеющих разную ориентацию: эстонский алфавит создан на основе латинского (Эстония всегда ориентировалась на Запад), и казахский алфавит, созданный на основе русского.
В эстонском алфавите 23 основных буквы, которые употребляются для передачи слов родного языка, и 9 букв (f, š, z, ž, c, q, w, x, y) используемых только в недавних заимствованиях из других языков и иноязычных именах собственных.
E={a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, š, t, u, v, w, x, y, z, ž, ä, õ, ö, ü}.
В казахский алфавит полностью входят 33 буквы русского алфавита, три буквы из латинского алфавита (ү, h, i) и шесть своеобразных букв (ə, ғ, қ, ң, ө, ұ), – всего 42 буквы.
К={а, ə, б, в, г, ғ, д, е, ё, ж, з, и, й, к, қ, л, м, н, ң, о, ө, п, р, с, т, у, ұ, ү, ф, х, h, ц, ч, ш, щ, ъ, ы, i, ь, э, ю, я}
[?-1]
Определите множества, которые получатся в результате следующих операций:
Примечание: В данном упражнении нас интересует только графическая сторона вопроса. Если рассматривать алфавиты так, как они записаны здесь – маленькими буквами, то у русского и латинского алфавитов есть одинаковые знаки: а, с, е, …, поэтому их пересечение не является пустым множеством.
[?-2]
Верны ли следующие утверждения:
[?-3]
Постройте диаграммы Венна для следующих множеств, считая универсальным множество всех алфавитов:
В процессе работы над книгой меня постоянно волновал вопрос: кому это будет нужно? Учитель-словесник отмахнется от математики, зачем ему теория множеств, учитель математики отмахнется от букв, алфавитов, слов, потому что ему всегда удобнее объяснять материал на числах и получится мой труд ради собственного удовольствия. Изрядную долю сомнений вносили знакомые учителя, зачастую именно так и высказываясь. Но меня не покидает надежда, что молодое поколение учителей будет мыслить по-другому, шире и разностороннее. Ученикам никогда не будет интересна нудная, хотя и необходимая, зубрежка правил, и, чтобы не отбить окончательно у них желание учиться, нужно использовать любую возможность сделать свой предмет увлекательным. Кому станет хуже, если на математике ученики повторят русский алфавит, распределение его букв по видам, узнают новые алфавиты.
О проекте
О подписке