Читать книгу «Основы ТРИЗ. Теория решения изобретательских задач. Издание 2-е, исправленное и дополненное» онлайн полностью📖 — Владимира Петрова — MyBook.
image

3.6. Выводы

Системное мышление опирается на понятия система (п. 3.1.2) и системность (п. 3.2).

Оно должно учитывать:

1. Иерархию систем.

2. Эволюционное развитие систем. Выявление тенденций развития и использование законов развития систем, прогнозирование будущих событий, будущих систем.

3. Взаимовлияния системы на подсистемы, надсистему и окружающую систему, обратное влияние надсистемы и окружающей среды на систему.

4. Учет изменений во времени и по условию и их влияние.

5. Выявление целей, потребностей, функций, принципов действия системы, структуру и функциональность системы.

6. Особое значение в системном подходе уделяют взаимовлияниям:

6.1. При системном анализе выявляют все взаимосвязи и взаимовлияния, приводящие к изменениям в системе, подсистемах, надсистеме и окружающей среде. Дается оценка этим влияниям и изменениям. Определяют закономерности этих изменений.

6.2. При системном синтезе учитывают все влияния, изменения и закономерности изменений при создании новых систем. Идеальный системный синтез – создание самоорганизующейся системы, приводящую к ее балансу. Это система приспосабливается к изменениям и противостоит разбалансирующим изменениям.

7. При анализе недостатков системы проводят ее анализ в последовательности:

7.1. Компонентный анализ.

7.2. Структурный анализ.

7.3. Функциональный анализ.

7.4. Диагностический анализ.

3.7. Самостоятельная работа

3.7.1. Контрольные вопросы

1. Дайте определение системного мышления и системного подхода.

2. Дайте определение системы.

3. Дайте определение системного свойства?

4. Приведите понятия, сопутствующее понятию система.

5. Дайте определение антропогенной системы.

6. Дайте определение технической системы.

7. Приведите приметы технических систем.

8. Опишите иерархию систем. Назовите иерархические уровни системы.

9. Дайте определение функции. Приведите примеры функций технических систем.

10. Опишите виды функций у технической системы.

11. Опишите иерархию функций.

12. Опишите классификацию оценки функций.

13. Что такое полезная функция?

14. Что такое бесполезная функция?

15. Что такое вредная функция?

16. Что такое достаточная функция?

17. Что такое недостаточная функция?

18. Что такое избыточная функция?

19. Дайте определение процесса.

20. Дайте определение потока.

21. Какие виды потоков могут быть?

22. Опишите классификацию оценки потока.

23. Дайте определение системности.

24. Опишите составляющие системности.

25. Опишите системные требования.

26. Опишите составляющие системного оператора.

27. Опишите виды изменений.

28. Опишите этапы и процесс системного синтеза.

29. Опишите этапы и процесс системного анализа.

30. Опишите этапы и процесс анализа выявления недостатков.

3.7.2. Темы докладов и рефератов

1. История появления термина система. Обзор и анализ имеющихся определений системы.

2. Анализ понятия системное мышление и системный подход у различных авторов.

3. Анализ не системного подхода к природе, антропогенным системам и в частности, к технике в истории развития человечества.

3.7.3. Выполните задания

1. Приведите примеры антропогенных и технических систем.

2. Приведите примеры не системного подхода.

3. Используйте системный оператор для лампы.

4. Используйте системный оператор для компьютера.

5. Выберете любую систему и/или процесс и примените к ней системный оператор.

6. Покажите учет влияний в природе.

7. Покажите учет влияний в технике.

8. Осуществите системный синтез для автомобиля.

9. Выберете систему и проведите для нее системный синтез.

10. Осуществите системный анализ для кофеварки.

11. Проведите анализ выявления недостатков для утюга, выполнив компонентный, структурный, функциональный и диагностический анализы.

12. Выберете систему и проведите для нее анализ недостатков.

Глава 4. ЗАКОНЫ РАЗВИТИЯ  СИСТЕМ

…понятие закона есть одна из ступеней познания человеком единства и связи, взаимозависимости и цельности мирового процесса.

Георг Вильгельм Фридрих Гегель


…эффективная технология решения изобретательских задач может основываться только на сознательном использовании законов развития технических систем

Генрих Альтшуллер

Рис. 4.0. Структурная схема ТРИЗ


Содержание главы 4:

4.1. Общие представления.

4.2. Закон S – образного развития систем.

4.3. Структура законов развития технических систем.

4.4. Законы организации технических систем.

4.4.1. Общие соображения.

4.4.2. Закон полноты частей системы.

4.4.3. Закон проводимости потоков.

4.4.4. Закон минимального согласования.

4.4.5. Построение новой системы.

4.5. Законы эволюции систем.

4.5.1. Общие сведения.

4.5.2. Закон увеличения степени управляемости.

4.5.3. Закон увеличения степени динамичности.

4.5.4. Закон перехода на микроуровень.

4.5.5. Закон перехода системы в надсистему

4.5.6. Закон увеличения степени согласованности.

4.5.7. Закон свертывания развертывания ТС.

4.5.8. Закон неравномерности развития частей системы.

4.6. Законы развития технических систем Г. С. Альтшуллера.

4.7. Прогнозирование развития технических систем.

4.1. Общие представления

Развитие любых объектов материального мира, природы, различных областей знаний, деятельности и мышления развиваются по своим определенным законам.

Законы носят объективный характер, выражая реальные отношения вещей, а также их отражение в сознании. Законы развития технических систем – это основа ТРИЗ.

Закон – внутренняя существенная и устойчивая связь явлений, обусловливающая их упорядоченное изменение.

Выявлением закономерностей развития техники занимались достаточно давно [48], [64].

Первая система законов развития технических систем была разработана Г. С. Альтшуллером [19, С. 113—127]. Она будет описана в п. 4.6.

Ниже будут представлена система законов развития техники и методика прогнозирования, разработанные автором. Сначала представим общую систему законов.

Законы по виду общности могут быть:

– Всеобщие законы развития систем это универсальные законы, справедливые для любой системы независимо от ее природы, вследствие единства материального мира.

– Общие законы развития систем, присущие для достаточно широкого класса систем, например, искусственных систем.

– Специальные законы развития систем, характерные для конкретного класса систем, например, технических систем.

К всеобщим законам мы относим самые общие из них:

– закон S—образного развития;

– законы диалектики.

К общим законам:

– законы развития потребностей;

– законы изменения функций.

К специальным законам – законы развития искуственных систем.

Наиболее общие из законов диалектики [48], [64], [80] следующие:

– закон перехода количественных изменений в качественные;

– закон единства и борьбы противоречий;

– закон отрицания отрицания.

Законы развития потребностей [48], [64], [80] определяют тенденции их изменения, знать которые необходимо для определения функций и систем, с помощью которых можно удовлетворить возрастающие потребности. Эти законы могут использоваться для прогнозирования новых потребностей.

Законы изменения функций [48], [64], [80] описывают тенденции их изменения. Они связаны с закономерностями развития потребностей, но имеют и свою специфику, например, переход систем к полифункциональным (многофункциональным – универсальным) или, наоборот, к монофункциональным (одно-функциональным – специализированным).

Техника развивается в тесном взаимодействии с общественным развитием и экосферой, вследствие чего наблюдаются значительное проникновение и обогащение законов развития общества, природы и техники. Например, развитие техники во многом зависит от потребностей общества и влияет на развитие природы.

Законы развития технических систем определяют критерии построения и развития техники.

В данной книге не будут рассматриваться законы диалектики, законы развития потребностей и законы изменения функций.

4.2. Закон S—образного развития систем

4.2.1. Общие представления

Любая система (в том числе и техническая) проходит несколько этапов своего развития. Эти этапы графически можно представить в виде кривой (рис. 4.1).

Рис. 4.1. S -образная кривая роста Где P – параметр системы, t – время.


В качестве параметра «P» могут быть, прежде всего, главные характеристики системы, например, размеры, скорость, мощность, производительность, количество проданных товаров, продолжительность жизни, количество популяций и т. д.

Вначале система развивается медленно (этап I), при достижении некоторого уровня развитие ускоряется (этап II) и после достижения некоторого более высокого уровня скорость роста уменьшается и в конечном итоге рост параметра системы прекращается (этап III).

Это этап сатурации, который может продолжиться очень долго. Иногда параметры начинают уменьшаться (этап IV) – система «умирает» (на графике это изображено пунктирной линией).

Подобные кривые часто называют S – образными или логистическими (логиста).

Развитие по S-образной кривой первоначально было открыто для биологических систем.

Для технических систем:

1. Этап I – «зарождение» системы (появление идеи вплоть до изготовления и испытания опытного образца).

2. Этап II – промышленное изготовление системы и доработка системы в соответствии с требованиями рынка.

3. Этап III – незначительное «дожимание» системы, как правило, основные параметры системы уже не изменяются, происходят «косметические» изменения, оптимизация параметров и доработка технологии изготовления, не существенные изменения внешнего вида или упаковки. На этом этапе происходит значительное расширение рынка сбыта и переход к массовому изготовлению.

4. Этап IV – параметры системы могут не изменяться или ухудшаться. Ухудшения могут вызываться несколькими фактами:

– следование моде, влияние экономической, социальной или политической ситуации, религиозные ограничения и т. п.;

– физическое и/или моральное старение системы.

Часто, на этапе IV система прекращает свое существование или утилизируется.

В теории решения изобретательских задач (ТРИЗ) развитие систем по S – образной кривой называют «Закон S – образного развития систем».

Для полноты картины рекомендуем самостоятельно рассмотреть и другие линии развития, связанные с S-образной кривой, которые были разработаны Г. С. Альтшуллером и рассмотрены в его работе: «Линии жизни» технических систем [19, С. 113—119].

1
...
...
13