Читать книгу «Фотопейзаж и компьютер» онлайн полностью📖 — Виктора Кощеева — MyBook.

Глава 2
Цветовые пространства и модели восприятия цвета

Получив некоторое представление о том, как работает зрительная система человека, перейдем к нашей основной теме – фотографии. Но сначала нужно напомнить суть основных понятий, относящихся к цвету и восприятию цвета человеком. В детали вдаваться не станем, а затронем только то, что будем использовать в остальной части этой книжки. Кто захочет, всегда сможет изучить любой вопрос более глубоко, отталкиваясь от упомянутых здесь терминов и воспользовавшись поиском в интернете.

Во многих случаях, хотя, может быть, и не всегда, художник или фотограф хочет, чтобы цвета его картины или фотографии воспринимались зрителем точно так же, как их видит сам автор. Независимо от того, рассматривается ли изображение в виде твердой копии или в виде картинки на экране. Да еще и независимо от условий просмотра (освещение, фон, геометрия просмотра, окружение), которые могут быть не такими, как у автора. Системы управления цветом в компьютерных программах как раз и призваны решить эту задачу настолько, насколько это возможно. Для понимания сути происходящего необходимо знакомство с азами науки о цвете, которые и излагаются в этой главе.

Конечно, сходные проблемы возникают и в других творческих профессиях. Передача нужного смысла слова (строчки, абзаца) от писателя или поэта к читателю. Передача впечатления от музыкального произведения от композитора к слушателю. В отличие от передачи цвета в последнем случае едва ли возможна какая-то формализация. Слишком многое зависит от культурного уровня и опыта читателя/слушателя. Впрочем, аналогия просматривается очень четко, так что, вероятно, все-таки это будет сделано. Но пока можно считать, что фотографам еще повезло. Или не повезло, смотря как к этому относится.

2.1. Цветовые пространства

Как известно, воспринимая видимый свет, человек ощущает его яркость (интенсивность) и еще нечто, называемое «цвет». Интенсивность можно измерить физическим прибором, а цвет – напрямую нет. Но для того, чтобы работать с цветом на компьютере, нужно сначала цвет оцифровать, то есть, каждому видимому цвету поставить в соответствие число (или несколько чисел).

Можно было бы характеризовать цвет видимого излучения его спектральным распределением энергии, которое можно измерить. Тем более что излучение с одним и тем же спектром воспринимается разными людьми с нормальным зрением как имеющее один и тот же цвет. Но в то же время существуют пары излучений с очень разными спектрами, которые человеком воспринимаются как имеющие совершенно одинаковый цвет (явление метамеризма). Кроме этого, ставить в соответствие цвету не числа, а функции, неудобно.

Как оцифровать цвет проще, помогают понять законы Грассмана (Hermann Grassmann), открытые эмпирически еще в 1853 году в экспериментах по смешиванию лучей света разных цветов:

1) цвет трехмерен, то есть одному цвету нужно ставить в соответствие три числа;

2) при непрерывном изменении цвета только одного из смешиваемых лучей цвет смеси тоже меняется непрерывно;

3) цвет смеси зависит только от смешиваемых цветов и не зависит от их спектров.

Отсюда следует, что все видимые цвета должны образовать некоторую непрерывную область (тело) в трехмерном пространстве. Каждая точка этого тела будет соответствовать определенному цвету. Если выбрать два разных цвета и соединить соответствующие им точки отрезком прямой, то этот отрезок будет определять все оттенки, которые можно получить, смешивая эти два цвета. Причем в случае линейного пространства пропорция смеси будет равна отношению длин частей отрезка, на которые цвет смеси делит его.

Поскольку отрезок, соединяющий два любых видимых цвета, содержит только видимые цвета, то он полностью находится внутри тела видимых цветов, а это значит, что это тело должно быть выпукло (без впадин и ямок).

По форме тело видимых цветов похоже на продолговатый фрукт, у которого один бок срезан. Точки поверхности «фрукта» (кроме среза) соответствуют монохромным цветам разной длины волны и разной интенсивности, то есть, имеющим максимальную насыщенность (монохромны, например, цвета радуги). Поверхность «отрезанной» части тела (кроме среза) соответствует «цветам» монохромных инфракрасных и ультрафиолетовых излучений, которые глаз не видит. Если выбрать какой-либо цвет на поверхности тела и понижать его насыщенность, добавляя все возрастающее количество белого цвета, то соответствующая точка начнет перемещаться вглубь тела и в пределе достигнет точки этого белого цвета, которая будет находиться где-то в середине «фрукта». Точки снаружи от поверхности, образованной цветами монохромных излучений, соответствуют «цветам», имеющим насыщенность бо́льшую, чем насыщенность монохромных цветов, что физически невозможно. Для получения такой насыщенности нужно было бы из монохромного цвета вычесть какое-то количество белого цвета, что физика не может сделать. А математика – пожалуйста.

Нейтрально серые цвета образуют линию, проходящую внутри тела видимых цветов и соединяющую самую темную точку (черную) с самой яркой (белой). Возникает важный вопрос, как определить, что такое нейтрально белый, серый и черный цвета. На глаз тут полагаться нельзя из-за хроматической адаптации (привыкнув к любому почти белому цвету, глаз начинает воспринимать его как чисто белый). Поэтому, работая с цветом математически, нужно каждый раз оговаривать, что в данном конкретном случае подразумевается под белым (и, как следствие, серыми и черным цветом). В теории черный цвет (излучение с нулевой интенсивностью) тоже имеет цветность, которую глаз, конечно, не видит.

Одну и ту же трехмерную фигуру (конечно, также как и фигуры любой другой размерности), можно рассматривать в различных координатных системах, линейных и нелинейных. Различные координатные системы, в которых может рассматриваться тело видимых цветов, называются цветовыми пространствами. Один и тот же цвет в разных цветовых пространствах записывается наборами разных чисел. В некоторых из этих пространств можно изобразить только часть видимых цветов и тело приобретает вид куба, конуса, биконуса или другую форму. Линейное преобразование цветового пространства соответствует тому, что мы как-то поворачиваем это тело и изменяем его размер равномерно и пропорционально. Нелинейное преобразование означает, что мы растягиваем или сжимаем тело видимых цветов так, что разные его части сжимаются или растягиваются по-разному.

Различных цветовых пространств (как и систем координат) можно придумать бесконечно много. На практике применяются только те из них, которые обладают некоторыми полезными свойствами. К общим свойствам цветовых пространств (ЦП) относятся:

• цветовой охват;

• линейность по восприятию;

• однородность по восприятию;

• зависимость от устройства;

• нормированность;

• точка белого и точка черного.

Цветовой охват (gamut, гамут, вкусное слово, думаю, оно приживется в русском языке) – это совокупность всех таких видимых цветов, которые могут быть представлены в данном ЦП. Кроме видимых цветов в некоторых ЦП могут быть представлены и физически невоспроизводимые цвета.

Линейность по восприятию (perceptually linear) означает, что изменение координат цвета приводит к изменению воспринимаемого цвета примерно в той же пропорции. Для однородного по восприятию цветового пространства (perceptually uniform), кроме того, близким разностям цветов соответствуют близкие по длине отрезки, соединяющие эти цвета.

Если при определении ЦП используются характеристики конкретного устройства (сканера, монитора, принтера), то такое пространство называется устройство-зависимым (или аппаратно-зависимым). Аппаратно-зависимое ЦП удобно для использования при работе с этим самым устройством. Если ЦП определяется с помощью величин, не связанных с каким-либо конкретным устройством, то оно называется устройство-независимым. Устройство-независимое ЦП предназначено для выполнения общих операций с цветом таких, как редактирование изображений или преобразования из ЦП одного устройства в ЦП другого устройства. Поскольку при этом отсутствуют ограничения, связанные с возможностями какого-либо устройства, то все такие операции могут быть выполнены без потерь.

Цветовой охват аппаратно-независимых ЦП обычно большой и может содержать физически нереализуемые цвета. Но даже если в процессе преобразования получится промежуточное изображение, в котором часть цветов окажутся физически нереализуемыми, при дальнейшей обработке эти цвета могут благополучно (и правильно!) вернуться в область воспроизводимых цветов.

При сравнении цветовых охватов устройств и цветовых пространств часто используется гамут Пойнтера (Michael R. Pointer). Гамут Пойнтера – это аппроксимация совокупности всех таких цветов, которые могут быть получены окрашиванием поверхности. То есть, с помощью вычитания цветов. Гамут Пойнтера является частью множества всех видимых цветов (которое получается сложением цветов).

Нормировку ЦП и выбор точек белого и черного обсудим в следующем параграфе.

2.2. Источники освещения и нормировка цветовых пространств

Вначале вернемся к вопросу о том, как объективно определить, что такое белый цвет. Для этого рассмотрим поверхность, которая отражает все длины волн видимого света полностью, без поглощения. Осветим такую поверхность излучением, которое имеет постоянный спектр, то есть, интенсивность излучения одна и та же для всех длин волн (физически измеряемая, а не воспринимаемая!). Естественно назвать цвет такой поверхности при таком освещении белым. Но при освещении этой же поверхности лампами накаливания, в первый момент она покажется желтоватой, а затем, после завершения процессов цветовой адаптации зрительной системы, станет казаться опять белой (возможно, с желтоватым оттенком).

Если сфотографировать какую-нибудь сцену, например, интерьер, освещенную некоторым источником света (illuminant, осветитель), и представить полученное изображение в каком-либо цветовом пространстве, то в качестве цветности точки белого этого ЦП нужно выбрать цветность этого источника освещения. Это позволит называть белыми те предметы, которые, как мы знаем, являются белыми, и будет находиться в согласии с восприятием цвета человеком (а именно, с механизмом хроматической адаптации). При этом результат будет соответствовать 100 %-й адаптации зрительной системы человека. Таким образом, чтобы исключить влияние цветности источника освещения на цвета предметов, нужно считать белым цвет источника освещения.

Поскольку в реальности встречается много разных вариантов освещения, то необходимо определить несколько типичных источников. Каждый источник полностью описывается своим спектром. Воспринимаемый цвет источника однозначно вычисляется по его спектру. Некоторым из осветителей можно поставить в соответствие цветовую температуру. Цветовая температура выражается в градусах Кельвина и равна температуре абсолютно черного тела, при которой его спектр излучения наиболее близок к спектру источника освещения. Стандартные источники освещения сгруппированы по сериям, которые обозначаются следующими буквами:

• A (лампы накаливания, 2856 К),

• D (дневной свет),

• E (постоянный спектр),

• F (флуоресцентные лампы),

• L (световые диоды) и другие.

Для фотографов особенный интерес представляет серия D (дневной свет, приведены также координаты цвета в пространстве CIEXYZ, см. ниже):

• D50 (свет горизонта, теплый дневной свет на восходе или закате, 5003 К), CIEXYZ=[0.9642, 1.0000, 0.8251 (или 0.8249)].

• D55 (дневной свет в середине утра или после обеда, 5503К), CIEXYZ= [0.9568, 1.0000, 0.9214].

• D65 (полуденный свет, состоит из прямого солнечного света и рассеянного света от ясного неба, 6504 К), CIEXYZ= [0.9504, 1.0000, 1.0888 (1.0889)].

• D75 (северное небо, пасмурное небо, 7504 К), CIEXYZ=[0.9496, 1.0000, 1.2261].

Цветности источников освещения серии D различаются:

• оттенками от желтого к голубому, учитывающими соотношение облачности и прямого солнечного света,

• оттенками от розового к зеленому, учитывающими наличие в атмосфере воды в виде пара или дымки.

Перейдем к точкам белого и черного цветовых пространств. Есть смысл отдельно рассматривать яркость и цветность этих точек. Если в качестве яркостей этих точек задать предельные значения, воспроизводимые на конкретном устройстве, то полученное ЦП будет аппаратно-зависимым. Цветность точки белого аппаратно-независимого ЦП обычно задается указанием стандартного источника освещения. Для некоторых аппаратно-независимых ЦП точки белого и черного не заданы, и клиппирование (замена цветов, выходящих за гамут, цветом, лежащим на границе гамута, см. ниже), вызванное их существованием, отсутствует.

Для многих реальных устройств цветности точек белого и черного не совпадают. Для мониторов на электронно-лучевой трубке цветность точки белого зависит от цветностей и относительных яркостей люминофоров, а цветность черного – от отражающих свойств поверхности экрана. Для принтера – соответственно, от цветности бумаги и от цветности чернил. Все это приводит к тому, что линия, содержащая нейтрально серые цвета не является прямой, а плавно изгибается во всех трех измерениях цветового пространства.

В ненормированном ЦП значения координат могут являться физически измеряемыми величинами, выраженными в каких-нибудь единицах, например, в канделах на квадратный метр для оси яркости. Такие значения являются абсолютными, то есть, имеющими самодостаточный смысл.

Для нормированного цветового пространства значения координат безразмерны и линейно преобразованы так, чтобы все они укладывались в отрезок значений с удобными для восприятия (и вычислений) границами. Обычно наибольшее возможное значение выбирают равным единице, 100 % или степени двойки без единицы, а наименьшее возможное значение – равным 0 или степени двойки без единицы с минусом (например, –127). Если для ЦП заданы точки белого или черного, то их координаты также могут служить наибольшими и наименьшими возможными значениями. Значения координат нормированного пространства являются относительными. Их смысл зависит еще и от нормировки, то есть, от того, что принято за граничные значения.

Иногда нормировка ЦП делается так, чтобы была разрешена яркость больше, чем яркость точки белого. Этот «запас» яркости используется для отображения бликов.

2.3. Цветовые модели

Цветовой моделью называют способ построения семейства цветовых пространств. Модели эти параметрические, поэтому, чтобы задать конкретное ЦП, входящее в эту модель, нужно задать конкретные значения параметров модели. Поскольку большинство параметров являются действительными числами, для каждой модели можно определить бесконечно много цветовых пространств. Для обработки фотографий чаще всего используются ЦП, входящие в следующие модели (в скобках перечислены параметры):

• цветовая модель RGB: цвет раскладывается на смесь трех базовых цветов: красный, зеленый и синий, и координатами служат коэффициенты этого разложения (параметры: три базовых цвета, точка белого, функция гамма-компрессии, см. ниже);

• цветовая модель CIELAB: одна координата цвета соответствует яркости, две остальные – цветности (параметр: точка белого);

• цветовая модель CMYK: цвет раскладывается на смесь четырех базовых цветов, голубой, лиловый, желтый и черный (параметры: три базовые цвета CMY, точка белого, алгоритм вычисления координат CMYK).

Вопросами, связанными с восприятием цвета, занимается Международная комиссия по освещению (CIE, Commission internationale de l'éclairage). Отсюда – начало аббревиатуры CIELAB и других.

Прежде чем рассматривать конкретные ЦП этих моделей, нужно описать еще два первичных ЦП, с которых все и началось. Поскольку цвет нельзя измерить физическим прибором, а можно только определить с помощью системы «глаз-мозг», то для того, чтобы сопоставить точкам какого-либо ЦП реальные цвета, без экспериментальных данных о восприятии цвета человеком не обойтись.

Поэтому, сначала опытным путем были получены функции, которые каждому монохромному излучению ставили в соответствие тот цвет, который человек видит, наблюдая это излучение. При этом использовались некоторые эталонные красный, зеленый и синий цвета (кардинальные стимулы). Наблюдаемый монохромный цвет записывался в виде трех чисел, равных таким интенсивностям этих эталонных цветов, при которых цвет смеси (на глаз) совпадал с наблюдаемым монохромным. Результаты усреднялись по некоторому числу наблюдателей с нормальным зрением. Интенсивности эталонных цветов были выбраны так, чтобы равные количества стимулов давали белый цвет, определенный стандартом, действующим в то время. В других аналогичных экспериментах использовался несколько иной способ определения интенсивностей эталонных цветов.

Используя полученные функции, оказалось возможным вычислять воспринимаемый цвет для любого спектра видимого излучения (благодаря законам Грассмана). Таким способом было построено CIERGB