Зрительная кора, занимающая затылочную часть головного мозга, имеет толщину около 2 мм и состоит из 140 миллионов нейронов в каждом полушарии. Зрительная кора разделяется на первичную (V1, стриарную, то есть, полосатую, так как под микроскопом видны полоски, идущие параллельно поверхности) и экстрастриарную зрительную кору. Последняя состоит из более чем 20 зон, обозначаемых V2. V3, V4, V5, IT (inferior temporal cortex), MT (middle-temporal cortex), MST (medial superior temporal cortex), PIT, AIT и других. Первая зона экстрастриарной коры называется вторичной зрительной корой (V2). Общая поверхность первичной коры у человека – 30000 мм2.
Типов нейронов зрительной коры насчитывается несколько сотен. Зоны V1 и V2 содержат около 70 % всех нейронов зрительной коры. Все зрительные зоны, как и другие зоны коры головного мозга в целом, содержат по шесть слоев нейронов, а основной вход в зону происходит в нейроны четвертого слоя.
Количество связей между первичной зрительной корой и последующими слоями в 25 раз больше количества волокон зрительной лучистости. Таким образом, нейроны следующего слоя могут формировать свои рецептивные поля из комбинаций рецептивных полей нейронов предыдущего слоя.
Также как и в НКТ, соседние участки поля зрения «проецируются» на соседние же участки первичной зрительной коры, причем сигналы от небольшого участка поля зрения поступают в небольшой участок зрительной коры. Центральная ямка сетчатки глаза проецируется на пространство коры в сотни раз большее, чем периферия сетчатки. Кроме того, сигналы от соседних участков сетчатки обрабатываются мозгом более или менее независимо (по крайней мере, на начальных стадиях обработки).
Если ганглиозные клетки сетчатки реагировали на наличие границы, то нейроны в слоях зрительной коры реагируют на более сложные виды картинок в своих рецептивных полях. Чем дальше расположен нейрон от сетчатки по пути, по которому идет визуальная информация, тем выше его избирательность. Так в зоне V1 существуют нейроны, реагирующие только на границу, идущую в определенном направлении, и не реагирующие на границы, идущие в других направлениях. То же самое для движения в определенном направлении. Также найдены клетки коры, возбуждающиеся только при поступлении информации о конце границы (линии).
По мере перехода к более глубоким слоям нейронов вид картинок, на которые нейроны реагируют, усложняется, а избирательность увеличивается. Есть нейроны, реагирующие только на определенные пространственные частоты. В более глубоких слоях зрительной коры существуют нейроны, возбуждающиеся только тогда, когда в их рецептивных полях находится изображение лица (может быть даже только определенного лица).
Зрительная кора, как и другие регионы коры головного мозга, состоит из миллионов вертикальных колонок нервных клеток по нескольку сотен нейронов в колонке. Диаметр колонок – 30–50 микрон. Между колонок первичной зрительной коры размещаются шарообразные области диаметром около полмиллиметра (цветовые шарики). Если двигаться параллельно поверхности V1, то будут чередоваться колонки, получающие информацию от левого и от правого глаза. То есть, изображения левого и правого зрительных полей не объединяются, а обрабатываются параллельно. Если двигаться перпендикулярно к поверхности V1, то направление, к которому чувствительны нейроны, будет плавно меняться от горизонтального к вертикальному и обратно.
Первичная зрительная кора служит своеобразной «линзой», с помощью которой остальные зрительные зоны получают визуальную информацию об окружающем мире, и свойства которой (линзы) они могут менять в широких пределах. Если первые зоны зрительной системы человека (НКТ, V1) занимаются выделением локальных деталей изображения, то остальные зоны ответственны за различение форм и узнавание объектов. В зоне V2 анализируются границы и форма поверхностей. В зонах V4 и MT осуществляется анализ признаков глубины и отделение объектов от фона.
Еще раз подчеркну, что деятельность первых зон в значительной степени зависит от результатов обработки картинки высшими зрительными зонами, задачей, которую ставит перед собой человек, и его личным опытом наблюдения подобных изображений.
С другой стороны, благодаря наличию прямых связей первичных зон с высшими (в обход промежуточных зон) информация о локальных деталях может поступать в высшие зоны зрительной коры непосредственно из первых зон.
Рецептивные поля нейронов зон V4 и MT примерно в четыре раза больше рецептивных полей нейронов зоны V1. Рецептивное поле нейрона зоны IT занимает уже бо́льшую часть всего поля зрения.
Обработка изображения происходит параллельно по трем взаимодействующим каналам.
• Первый канал (канал «Что») состоит из нейронов-детекторов деталей изображения. Эти нейроны хорошо различают мелкие детали, но имеют низкую чувствительность к контрасту и к изменениям во времени. По мере перехода от слоя к слою избирательность нейронов увеличивается. Нейроны зоны IT реагируют на очень сложные элементы картинки, например, на изображения лица, независимо от их размера и положения на сетчатке.
• Второй канал (канал «Где») состоит из нейронов-детекторов контраста и движения. Эти нейроны имеют высокую чувствительность к контрасту и к изменениям во времени, но низкое пространственное разрешение. Одни нейроны MST реагируют на небольшие движущиеся объекты, а другие – на движение краев больших объектов. С помощью этого канала быстро обнаруживаются новые или изменившиеся объекты.
• Третий канал состоит из нейронов, имеющих отношение к восприятию цвета.
Интересно, что полученное человеком образование влияет на размеры зон коры головного мозга. Так обнаружено, что у музыкантов, зона, ответственная за чтение партитур, увеличена за счет уменьшения соседних зон.
Каждый нейрон может иметь до 15000 соединений с соседними нейронами. Те соединения, которые оканчиваются на дендритном дереве, возбуждают нейрон, а те, которые соединяются с телом нейрона – тормозят. Каждую секунду нейрон может получать тысячи возбуждающих и тормозящих импульсов от своих соседей. Как это все работает – уму непостижимо!
А как все это выросло из одной клетки! Конечно, в ДНК закодирована не схема соединения нейронов, а правила ее построения. Типа «аксон нейрона ищет ближайший нейрон, использующий такой же нейромедиатор, и соединяется с ним; если не находит, то нейрон этого аксона отмирает».
Когда-нибудь докопаются и до детальных исходных текстов этой программы.
Придумана красивая математическая модель, которая удивительным образом объясняет, для чего могло бы понадобиться создать такую систему рецептивных полей нейронов коры головного мозга и как это могло быть сделано. Идею можно объяснить следующим образом.
Пусть мы имеем много фотоснимков разных пейзажей. Поставим такую задачу: найти такой набор кусочков изображений, из которых можно было бы составить (как пазл) любую из этих фотографий. Пусть таких кусочков будет много, лишь бы каждый снимок состоял из небольшого их числа. Эта задача имеет тривиальное решение: разрезаем каждый снимок на кусочки и все вместе они и дадут искомый набор.
Потребуем теперь, чтобы количество кусочков было гораздо меньше, чем получились в этом наборе. Это можно было бы сделать, например, рассортировав этот набор на группы похожих кусочков, и каждую группу заменить на один «усредненный» кусочек.
Оказывается, что такая задача может быть решена не разрезанием изображений на части и сортировкой кусочков, а математически строго. То есть, для заданного множества изображений можно построить набор наилучших картинок, из которых может быть составлено каждое изображение из этого множества. «Наилучших» в том смысле, что составленное из этих картинок изображение будет отличаться от исходного минимальным образом. И при важном условии, что каждое изображение составляется из небольшого количества картинок.
Основная цель решения этой задачи не в том, чтобы получить составные изображения, близкие к исходным, а в том, чтобы найти элементарные компоненты изображений данного класса, позволяющие экономным образом закодировать их структуру.
Когда такой алгоритм (sparse coding, разреженное кодирование) обработал около полумиллиона кусочков изображений пейзажей и других сцен окружающего нас мира, то полученные элементарные картинки оказались невероятно похожи на картинки, на которые настроены рецептивные поля некоторых из нейронов первичных зрительных зон головного мозга!
Если составление изображений из кусочков сравнить с составлением слов из букв, то получается, что полученный алфавит (набор элементарных картинок) содержит много букв, но каждое изображение представляет собой короткое слово. В этом и состоит «разреженность». Получается что-то вроде китайской азбуки, но вид иероглифов не придуман людьми, а вычислен оптимальным образом для заданного набора понятий, которые должны быть описаны этим языком.
Если это все действительно так, то вырисовывается следующая схема.
1. Каждый «пиксель» изображения на сетчатке представлен в высших разделах зрительной коры головного мозга в виде возбуждения только тех нейронов, для которых картинка в окрестности этого пикселя «совпала» с той, на которую настроены их рецептивные поля. Нейронов, в рецептивных полях которых находится окрестность данного пикселя – много, может быть, сотни тысяч и больше, но для конкретного изображения (одного из тех, которые могут встретиться в природе), всегда сработает только небольшое их количество, возможно, единицы или десятки (в этом и проявляется разреженность!).
2. Картинки в рецептивных полях, на которые реагируют нейроны зрительной коры, формируются в процессе самообучения в раннем возрасте, а может быть, и в течение всей жизни. Когда младенец с удивлением рассматривает яркую игрушку, может быть, в это время это и происходит. Получающиеся картинки различаются рисунком, ориентацией и полосой пространственных частот этого рисунка.
Если верно, что наружное коленчатое тело преобразует изображение на сетчатке в последовательность изображений с разными интервалами пространственных частот, то тем самым дается шанс нейронам, настроенным на разные частоты, «опознать» свой рисунок.
Полагают, что разреженное кодирование является общим принципом кодирования сенсорной информации в нервной системе и используется, в частности, для кодирования природных звуков или запахов.
Благодаря представлению информации, полученной от сенсоров, в виде разреженного кода:
• выявляется структура сложных входных данных, что упрощает их анализ на последующих уровнях;
• повышается емкость ассоциативной памяти, т. к. повышается различимость сходных состояний;
• экономится энергия (а подсчитано, что в коре головного мозга энергии хватает только для одновременной активации не более чем 2 % всех нейронов коры).
О проекте
О подписке