Период дыхательных движений, или ритм дыхания, формируется в системе нервных клеток продолговатого мозга, что обеспечивает работу дыхательной системы в режиме непроизвольного дыхания. Из дыхательного центра, расположенного в продолговатом мозге, передаются команды к дыхательным мышцам. Информация о последовательности, продолжительности и силе сокращения поступает к мотонейронам (двигательным нейронам) дыхательных мышц. Так устанавливается степень сокращения дыхательных мышц и текущий объем легких при спонтанном дыхании. В произвольном управлении дыхательными движениями участвуют клетки коры больших полушарий головного мозга. Смена газового состава в легких, или вентиляция легких, происходит за счет работы дыхательных мышц. Дыхательный акт (цикл) состоит из вдоха и выдоха.
В продолговатом мозгу расположен дыхательный центр, из которого периодически поступают команды к дыхательным мышцам. Это центральное нервное образование, составленное из функционально разных нервных клеток, обеспечивает работу дыхательной системы в непроизвольном автоматическом режиме (поэтому обыкновенно мы не замечаем собственного дыхания). Дыхательный центр определяет порядок включения, силу и продолжительность сокращения различных мышц в зависимости от газообменной потребности организма. Залпы возбуждающих импульсов передаются из дыхательного центра по диафрагмальному нерву к диафрагме и по межреберным нервам – к межреберным мышцам.
При вдохе, согласно команде дыхательного центра, сокращаются основная вдыхательная мышца – диафрагма – и наружные межреберные мышцы. В результате сокращения вдыхательных мышц купол диафрагмы уплощается и опускается, а ребра поднимаются, ввиду чего увеличивается объем грудной клетки. Плевральная полость, повторяем, герметична, и давление в ней отрицательное по отношению к атмосферному. Поэтому легкие пассивно расправляются в грудной полости и под действием силы атмосферного давления через воздухоносные пути наполняются воздухом. Так происходит вдох.
Вдыхательные мышцы преодолевают ряд сопротивлений, главнейшие из которых – эластическое сопротивление реберных хрящей и самой легочной ткани, масса приподнимаемой грудной клетки и сопротивление брюшных внутренностей и стенок живота, оттесняемых диафрагмой при ее уплощении во время сокращения.
Когда вдох окончен и вдыхательные мышцы расслабляются, суммарное действие перечисленных сопротивлений возвращает грудную клетку в исходное положение: ребра в силу упругости их соединений опускаются, диафрагма выпячивается вверх. В результате уменьшается объем грудной клетки и соответственно – объем легких. Причем избыток воздуха, вошедшего при вдохе, выталкивается наружу из-за увеличения внутрилегочного давления. Так в спокойном состоянии пассивно, без активного участия дыхательных мышц осуществляется выдох. Лишь при усиленном или затрудненном дыхании выдох становится активным: ему помогает сокращение мышц-экспираторов (выдыхательных мышц) – брюшного пресса, внутренних и части наружных межреберных.
После выдоха дыхательный цикл ритмично повторяется. И так всю жизнь. От первого до последнего вдоха…
При произвольном стремлении изменить дыхательные движения, например задержать дыхание при нырянии или согласовать ритм спортивных движений с дыхательными, в регуляцию дыхания включаются высшие отделы головного мозга, контролирующие работу всех мышц тела (соматических мышц).
Обычно человек не замечает, какую работу ежесекундно выполняют его дыхательные мышцы. Однако любая физическая нагрузка, приводя к усилению дыхания, делает весьма ощутимыми движения грудной клетки. И при спокойном дыхании расходуется немалая энергия. Поэтому задача дыхательной системы состоит в доставке организму кислорода при наименьшей затрате энергии на само дыхание. Сохранение минимальной энергетической «себестоимости» кислорода – одно из важнейших условий жизнедеятельности организма. При чрезмерном расходе кислорода на функционирование самого дыхательного аппарата, как это бывает при различных заболеваниях или при затруднениях дыхания, организм страдает от кислородного голодания. В критических случаях дыхание перестает быть условием жизни и становится самоцелью: получается так, что больной живет лишь для того, чтобы дышать, вместо того чтобы дышать для полноценной жизни.
Жизненная емкость легких – общий объем воздуха, который может быть выдохнут при максимальном выдохе после самого глубокого вдоха, – служит одним из показателей физического развития человека. Занятия спортом и дыхательные упражнения повышают жизненную емкость, а все причины, затрудняющие дыхательные движения, снижают ее и тем самым ухудшают снабжение организма кислородом (рис. 2).
Она в среднем равна 3500 мл у мужчин и 2700 мл у женщин, а у хорошо тренированных лиц может достигать 6000 мл. При этом даже после весьма интенсивного выдоха в легких обязательно остается около 1500 мл так называемого остаточного воздуха.
Объем воздуха, проходящий через легкие за одну минуту, называют минутным объемом дыхания. В норме он равен 4000 – 6000 мл. При мышечной работе он увеличивается, например, у спортсменов при беге – до 30 л.
В покое взрослый человек делает примерно 16 дыханий в одну минуту. За каждый вдох в легкие попадает около 50 мл воздуха. При самом глубоком вдохе можно дополнительно вдохнуть около 1500 мл воздуха, а при самом глубоком выдохе выдохнуть еще 1500 мл резервного воздуха, однако и после этого в дыхательной системе останется еще около 1500 мл воздуха.
Не весь объем вдыхаемого воздуха участвует в газообмене. При каждом вдохе около 150 мл его остается в полости носа, ротовой части глотки, носоглотке, гортани, трахее, бронхах. Этот объем воздуха называют вредным пространством.
Итак, в легкие во время вдоха поступает воздух, который по дыхательным путям доходит до мелких разветвлений бронхов. Далее кислород посредством диффузии достигает альвеол и смешивается с альвеолярным воздухом. В альвеолах происходит интенсивный обмен газов, но химический состав альвеолярного воздуха изменяется совсем незначительно, хотя заметно отличается от атмосферного. Его состав остается довольно постоянным при вдохе и выдохе за счет того, что в альвеолы из воздухоносных путей непрерывно диффундируют молекулы кислорода и удаляются молекулы углекислого газа. Это имеет большое физиологическое значение для поддержания постоянства внутренней среды организма. Благодаря альвеолярному воздуху, выполняющему роль посредника, кровь непосредственно не соприкасается с окружающим нас воздухом.
Рис. 2. Легочные объемы и емкости
Легочная вентиляция определяется глубиной дыхания (дыхательным объемом) и частотой дыхательных движений. В покое дыхательный объем мал по сравнению с общим объемом воздуха в легких. Таким образом, человек может как вдохнуть, так и выдохнуть большой дополнительный объем. Однако даже при самом глубоком выдохе в альвеолах и воздухоносных путях легких остается некоторое количество воздуха.
Газообмен между воздухом и кровью через стенки альвеол и легочных капилляров и между кровью и клетками через стенки тканевых капилляров происходит посредством диффузии. В альвеолах легких кислород диффундирует в кровь, а углекислый газ – из крови в воздух. Артериальная кровь от легких движется к тканевым капиллярам, где происходят обратные по направлению процессы обмена газов между тканями и кровью.
У здорового человека в нормальных условиях давление кислорода в альвеолярном воздухе больше, чем в венозной крови, притекающей к легочным капиллярам. В отношении углекислого газа наблюдается как раз обратное: его давление в альвеолярном воздухе меньше, чем в венозной крови и тем более в тканях, где он постоянно образуется в результате жизнедеятельности клеток. Разности давлений, существующие между кислородом в альвеолярном воздухе и в венозной крови и между углекислым газом в притекающей крови и в альвеолярном воздухе, являются физической причиной перехода кислорода из воздуха в кровь и углекислого газа из крови в альвеолярный воздух. Газы диффундируют в направлении, определяемом разностью давлений (напряжений) внутри и снаружи капиллярных стенок. Вследствие диффузии (самопроизвольного проникновения молекул газа из места с большим давлением в место, где давление газа меньше) кислород из альвеолярного воздуха переходит в кровь, а углекислый газ, принесенный в легкие кровью, переходит из нее в альвеолярный воздух и удаляется в атмосферу.
Скорость диффузии в легочных капиллярах довольно велика, и за время движения крови по ним (около 2 секунд) давление газов внутри и снаружи капилляров успевает выровняться. Поэтому можно считать, что напряжение (давление) газов в альвеолах и артериальной крови одинаково. В тканевых капиллярах скорость диффузии газов на границе кровь – ткань сравнительно мала, и давление газов в крови не успевает достичь величины, равной давлению в тканях. Поэтому давление газов в венозной крови на некоторую величину отличается от давления газов в тканях.
Перенос газов кровью представляет собой доставку O2 к тканям и обратный транспорт СO2. Кровь, двигаясь по замкнутому кругу, обеспечивает перенос газов между легкими и тканями. Газы переносятся кровью частично в свободном растворенном в плазме состоянии, но в основном в связанном виде посредством образования обратимых химических соединений с гемоглобином. Именно гемоглобин крови обеспечивает химическое связывание и перенос кислорода и углекислого газа, которые поступают в плазму крови в процессе диффузии.
Газообмен в легких и тканях организма становится возможен благодаря транспортной системе крови, которая циркулирует по замкнутому кругу, содержащему два участка капилляров: легочных и тканевых. Не приходится доказывать, что функция дыхательной системы неразрывна с деятельностью сердечнососудистой, и обе они нерасторжимы при выполнении
О проекте
О подписке