Читать книгу «Пострефлекторная нейробиология поведения» онлайн полностью📖 — Варвары Дьяконовой — MyBook.
image

2004
Центральные генераторы гетерохимичны

[Тезисы доклада на семинаре «Мозг» 23 марта 2004 г.]
Сахаров Д. А. Уроки малых сетей https://www.youtube.com/watch?v=QrTdStx12Ys&index=5&t=0s&list=PLROtX2azk QkbCf97r94F-42kTDXoF9_4c

Уже не удивляет, что нейронам человека и, к примеру, червя присущи общие физиологические механизмы. Универсальны и механизмы межнейронных взаимодействий, в которых используется стандартный набор сигнальных молекул. Поэтому понятен соблазн распространить идею универсальности на правила, по которым нервная система осуществляет функции управления и координации. В 60-х гг. утвердилась мысль, что кратчайший путь к выяснению этих правил – полный нейрофизиологический анализ небольшого клеточного ансамбля, управляющего простой, понятной, самостоятельной частью моторного поведения. Перебор предложенных вариантов позволил международному клубу заинтересованных групп сконцентрировать усилия на нескольких избранных управляющих системах такого рода. Все они квалифицируются как Central Pattern Generators (CPGs) – центральные генераторы упорядоченной активности. Список включает CPGs, которые управляют локомоцией крылоногого моллюска Clione limacina и пиявки, избегательным плаванием морских слизней Tritonia и Pleurobranchaea, а также моторикой буккального аппарата ряда «модельных» гастропод и стоматогастрического аппарата десятиногих раков. (Последняя в списке модельная система обнаружила максимальные обще-физиологические потенции.) Опыт изучения этих нейробиологических моделей дает пищу для обобщений. Ранние представления о CPG сложились под впечатлением уникальности клеточных элементов ансамбля. Казалось, что свойства каждого нейрона не просто уникальны, но постоянны в своей уникальности, отчего и структура сети постоянна. Исследования последних лет внесли существенные поправки. Становится уместным говорить о способности отдельного нейрона включаться в состав разных сетей, о репертуаре функций отдельной сети, короче, о нейронном ансамбле как динамичной системе. Свой сегодняшний взгляд на предмет докладчик выражает следующими тезисами.

[1] Физиология CPG не укладывается в рефлекторную доктрину, но хорошо соответствует натуралистическим постулатам этологии об эндогенных поведенческих программах, релизерах и т. п.

[2] Фактором, ответственным за внесение упорядоченности в активность CPG, является гетерохимизм. Репертуар состояний обеспечивается набором сигнальных молекул, секретируемых как собственными элементами сети (напр., трансмиттер фазы), так и афферентными входами (напр., трансмиттер реконфигурации, стоп-трансмиттер).

[3] Мишенью нейротрансмиттера является сеть как целое. Этому соответствует «безадресное» (зональное) размещение мест секреции.

[4] Ответы компонентов сети на индивидуальный трансмиттер или смесь сигнальных молекул синергичны (взаимно-согласованы). Это обеспечивается наличием разных рецепторов к одному трансмиттеру.

[5] При трансмиттер-специфической реорганизации ансамбля в сеть иной конфигурации, наряду с тривиальными де- и гиперполяризующими эффектами трансмиттера, существенное значение имеют такие эффекты, следствием которых является устойчивое изменение свойств нейрональной мембраны (напр., появление или исчезновение эндогенных волн, платовых потенциалов, послеспайковой гипер- или деполяризации и т. п.).

[6] У близко- или даже отдаленно-родственных организмов гомологичное поведение управляется гомологичными сетями, построенными из гомологичных нейронов, которые консервативно сохраняют свою трансмиттерную специфичность. Клеточные корреляты эволюции управления поведением остаются слабо исследованными.

2010
Трансляция поведенческого контекста

[Аннотация доклада на ученом совете Института биологии развития РАН, 2011]
Дьяконова В. Е. Контекст-зависимый выбор поведения: нейротрансмиттерные механизмы

Известно, что поведение животного в одной и той же ситуации и даже ответ на один и тот же стимул могут быть разными в зависимости от контекста, т. е. от разнообразных внешних и внутренних факторов: времени суток, температуры, предыдущего опыта, поведенческого состояния и т. д. Существующие описания механизмов контекст-зависимого поведения построены на традиционном для нейрофизиологии представлении о сетевой организации нервной системы, в которой ключевую роль играют электрическая активность и синаптические взаимодействия между нервными клетками. Другой теоретический подход к организации нервной системы предполагает, что ключевую роль играют химические факторы – такие, как множественность нейрональных фенотипов, механизм объемной передачи (volume transmission) и интегративное действие нейротрансмиттерных веществ [1, 2]. Под интегративным действием нейротрансмиттеров понимается характерная для объемной передачи ситуация, когда возбуждающие, тормозные и модулирующие, а иногда и гормональные эффекты нейротрансмиттера на разные клеточные мишени складываются в хорошо координированный ответ локальной системы.

Этот подход позволяет сформулировать новую гипотезу в отношении механизмов контекст-зависимого поведения: поведенческий контекст транслируется в контекст химический, а интегративное действие нейротрансмиттеров обеспечивает адекватный ответ нейронального ансамбля. Обоснованию этой гипотезы будет посвящен мой доклад. Собственные исследования проводились на модельных беспозвоночных, представляющих две основные группы первичноротых животных, – сверчке Gryllus bimaculatus и моллюске Lymnaea stagnalis. В опытах на сверчке изучались нейрохимические механизмы контекст-зависимой агрессии. В опытах на прудовике основное внимание уделялось клеточному анализу контекст-зависимых форм локомоторного и пищевого поведения. Я покажу, что (i) при изменении поведенческого контекста происходят значимые изменения в интенсивности синтеза и/или высвобождения определенного нейротрансмиттера; (ii) изменением содержания соответствующего нейротрансмиттера можно имитировать действие поведенческого контекста и, наоборот, можно снимать влияние поведенческого контекста подавлением соответствующей нейротрансмиттерной системы; (iii) на клеточном уровне существуют механизмы, обеспечивающие изменение интегративного экстрасинаптического высвобождения нейротрансмиттера при формировании поведенческого контекста; (iv) нейрохимический контекст может определять выбор ответа нейронального ансамбля и изолированного нейрона на один и тот же стимул.

Литература

[1] Сахаров Д. А. Интегративная функция серотонина у примитивных Metazoa // Журн. общ. биол. 1990. Т. 51. С. 437–449.

[2] Caxapoв Д. A. Mнoжecтвeннocть нeйpoтpaнcмиттepoв: фyнкциoнaльнoe знaчeниe // Журн. эвoл. биoxим. и физиoл. 1990. Т. 26. № 5. С. 733–741.

2011
Антирефлекторная революция продолжается

[Доклад на конференции «Когнитивная наука в Москве: новые исследования»]
Сахаров Д. А. Биология мозга накануне смены парадигм // Когнитивная наука в Москве: новые исследования. М.: Буки-Веди, 2011. С. 220–224

Смена парадигм всегда болезненно воспринималась теми, кому довелось жить и работать в условиях научной революции. Сомнительным утешением служат известные слова Макса Планка: «Новая научная истина не достигает триумфа путем убеждения своих оппонентов и их просветления. Скорее, это происходит оттого, что ее оппоненты в конце концов умирают и вырастает новое поколение».

Автор настоящего сообщения отдает себе отчет в том, что оно может эпатировать какую-то часть профессионального сообщества. В самом деле, такие термины, как нервный импульс, рефлекторная дуга, синапс, нейронная сеть, а также их многочисленные производные – синаптическая передача, нейротрансмиттер и т. п., давно и небесполезно служат нашей науке. Но трудная истина состоит в том, что этот понятийный аппарат на наших глазах превращается из рабочего инструмента в набор дезориентирующих мифологем. Не отвлекаясь от частных текущих задач, мы должны осмыслить концептуальное значение накопившихся эмпирических данных, облегчив себе тем самым преодоление трудностей.

Понятийный аппарат, о котором идет речь, успешно соответствовал парадигме «стимул – ответ» – целостному и внутренне непротиворечивому взгляду на механизмы нервной деятельности. Напомним его содержание фрагментом из свежей версии сетевого учебного текста:

Путь, по которому проходит нервный импульс от рецептора до эффектора (действующий орган), называется рефлекторной дугой. …Любое раздражение… трансформируется (преобразуется) или, как теперь принято говорить, кодируется рецептором в нервный импульс… Рефлекс является функциональной единицей нервной деятельности. Вся нервная деятельность, как бы она ни была сложна, складывается из рефлексов различной степени сложности, т. е. она является отраженной, вызванной внешним поводом, внешним толчком [1].

Отечественной цитате вторит регулярно обновляемый текст под названием «Neuroscience Core Concepts: The Essential Principles of Neuroscience», размещенный на сайте авторитетнейшего Society for Neuroscience:

2b. Action potentials are electrical signals carried along neurons. 2c. Synapses are chemical or electrical junctions that allow electrical signals to pass from neurons to other cells. 3с. The simplest circuit is a reflex, in which a sensory stimulus directly triggers an immediate motor response [2].

Парадигмы живучи. Свои эмоции мы всё еще описываем по Аристотелю («отлегло от сердца»), время суток – по Птолемею («солнце взошло»). Так, вероятно, будет и с ошибочно толкованным нервным импульсом. Умом-то мы давно знаем, что потенциал действия вовсе не бегает along neurons и не pass from cell to cell; его функция – информировать секреторный конец вытянутой нервной клетки о событиях, происходящих на рецепторном ее конце; но парадигма «стимул – ответ» комфортна для обыденного сознания, и это превращает Essential Principles в собрание неумышленных лукавств.

История рефлекторной доктрины объясняет многое. Свое естественно-научное содержание она обрела в 1850–1852 гг., когда Г. Гельмгольц (1821–1894) определил скорость движения животного электричества по нерву. Этот результат был неосторожно экстраполирован на ЦНС. Функцию биологического субстрата нервной деятельности свели, таким образом, к проведению электрического сигнала. Такое толкование нервных процессов изначально хромало, поскольку не уживалось с клеточной теорией, но неловкость устранили допущением, что тонкие ветви отростков нервных клеток сливаются в сером веществе мозга, образуя синцитий (нейропиль) и тем обеспечивая целостность проводника.

Умозрительный нейросинцитий обернулся чередой мучительных компромиссов. Не раз случалось так, что найденный компромисс казался окончательным разрешением противоречий, тогда очередной спаситель парадигмы удостаивался Нобелевской премии: Гольджи (1906) – за непрерывные нейрофибриллы; Кахал (1906) – за клеммы-синапсы; Дейл (1936) – за перенос электрического импульса через щель; Экклс (1963) – за абсурдную, в сущности, передачу торможения возбуждением и за постулат диффузионных барьеров, обеспечивающих надежную адресацию электрического сигнала.

Диффузионные барьеры тоже долго не продержались. В начале 1990-х гг. под натиском данных об экстрасинаптической секреции и рецепции нейротрансмиттеров возникло представление об объемной передаче (volume transmission). При volume transmission, в отличие от стандартного синаптического механизма, вещества, ответственные за межнейронную коммуникацию, выходят за пределы синаптической щели и диффундируют в экстра-клеточном пространстве. К 2000 г. относится итоговый сборник, в статьях которого, согласно издательской аннотации, volume transmission рассматривается как «новая система коммуникации, комплементарная классической синаптической передаче» [3]. Эта комплементарность пока остается последним компромиссом рефлекторной доктрины.

В развитие экстрасинаптического направления исследований в нашем коллективе была разработана методика, позволяющая дискриминировать между synaptic и volume transmission (подвижный мультичувствительный биосенсор на основе изолированного нейрона) [4]. Эксперименты с биосенсором не подтвердили синаптической природы протестированных межнейронных взаимодействий, которые считались синаптическими [5, 6]. Если учесть, что до сих пор ни один случай синаптической передачи не был документирован дискриминирующим экспериментом, уместно задаться вопросом: а существуют ли синапсы вообще? Или же они идеализация, теоретический предел диапазона взаимодействий?

Наделяя биологический субстрат нервных процессов пассивной проводящей функцией, парадигма «стимул – ответ» рассматривала в качестве отправной точки сигнала сенсорный конец дуги – и тем вступала в противоречие с исторически более ранним пониманием рефлекса Р. Декартом (1596–1650). Декарт, пусть умозрительно, считал двигательные команды эндогенным продуктом мозга. Сенсорика, согласно Декарту, лишь высвобождает этот спонтанно образующийся продукт из мозга и направляет его к нужному эффектору. Первыми в современной науке правоту такого взгляда признали зоологи-этологи. Окончательным опровержением идеи отраженного сигнала стала проверка заключений этологов методами клеточной нейрофизиологии (нейроэтология).

Наиболее продвинутыми оказались нейроэтологические исследования, посвященные управлению моторными ритмами. Предположение, что фазировка моторного цикла определяется не цепочками рефлексов, а устройством центра, высказывалось еще в 1910-х гг., но прямые и неопровержимые свидетельства были получены только через 50 лет. Возникнув в 1960-х гг., общая физиология центральных генераторов упорядоченной активности (central pattern generators, CPGs) неоднократно уточнялась и пересматривалась. На смену первоначальному «wiring» (синаптически организованная сеть жестко связанных между собой нейронов, каждый из которых обладает набором фиксированных свойств) последовательно приходили представления о модулируемых, перестраиваемых и транзиторных нейронных сетях.

В наших исследованиях последних лет упомянутые выше биосенсоры (изолированные нейроны!), будучи помещенными по соседству с CPG, зачастую вели себя так, как если бы они входили в состав паттерн-генерирующей синаптической сети. Таким образом, мы приходим к такому пониманию организации нейронных ансамблей, где главные, ключевые слова – гетерохимизм (ассортимент нейрональных фенотипов) и беспроводная коммуникация (адресация сигнала специфичностью нейроактивных молекул). Ранняя версия бессинаптической гипотезы была мною сформулирована еще в 1985 г. [7], современное состояние проблемы рассмотрено в работе [8]. Старой парадигме оппонируют и другие существенные понятия, в частности уже упоминавшаяся спонтанность (эндогенная природа активности нервных клеток и их сообществ), а также контекст-зависимость. Говоря о последней, мы имеем в виду хорошо документированные феномены, когда поведенческим контекстом определяются как свойства индивидуальных нейронов, так и форма самоорганизации нейронов в дееспособный ансамбль. Мы исповедуем рабочую гипотезу, согласно которой интегратором поведенческого контекста служит динамически меняющийся состав локальной межклеточной среды [8]. Включая в себя, помимо иных нейроактивных факторов, сигнальные молекулы проекционных входов, межклетник обеспечивает адаптивный характер поведения.

Назрели вопросы, на которые пока нет ответов. В частности, неясен механизм дискретизации континуума, конкретно – механизм, посредством которого континуум нейроактивных составляющих межклетника обеспечивает ансамблю нейронов возможность выбора из ограниченного репертуара устойчивых выходных паттернов (например, выбор между локомоторными аллюрами).

1
...
...
9