Читать книгу «Учение об иллюзиях полета. Основы авиационной делиалогии» онлайн полностью📖 — Владимира Пономаренко — MyBook.
image

2.4 Кожный анализатор

Рецепторы анализаторов, воспринимающих осязательные (тактильные), болевые и термические ощущения, расположены в коже. Функционально они тесно связаны между собой. Поэтому для краткости можно обозначать их как кожный анализатор. Каждый участок кожи обладает наибольшей чувствительностью к тем раздражителям (сигналам), для которых на этом участке кожи имеется относительная концентрация соответствующих рецепторов. Эти рецепторы взаимодействуют друг с другом через нервные окончания. В связи с этим воздействие на какой‐либо участок кожи даже неспецифическим, но достаточно сильным раздражителем вызывает специфическое ощущение, обусловленное типом рецепторов. Например, интенсивный тепловой луч, попадая в точку боли (на болевые рецепторы), может вызвать ощущение боли, а не тепла.

Чувствительность к осязанию (прикосновению) проявляется при давлении на кожу и исчезает сразу же после прекращения прикосновения. При последовательном воздействии одиночных прикосновений ошибка в локализации ощущения колеблется в пределах 2–8 мм. При одновременном воздействии в двух точках порог осязания зависит от места приложения раздражителя. Абсолютный порог пространственной чувствительности в основном определяется плотностью рецепторов и зависит от места приложения раздражения, функционального состояния рецепторов [76].

При ритмических последовательных прикосновениях к коже каждое из них воспринимается как отдельное до тех пор, пока не будет достигнута критическая частота, при которой ощущение последовательных прикосновений переходит в специфическое ощущение вибрации. Критическая частота в зависимости от условий и места приложения раздражения колеблется от 5 до 20 Гц. Частотный анализ диапазона вибрационной чувствительности находится в пределах 5–12 000 Гц. Максимальная чувствительность отмечается при 200–300 Гц (при пороговой амплитуде 1 мкм).

Кожная чувствительность к боли обусловливается воздействием на поверхность кожи механических, тепловых, химических, электрических и других раздражителей. Болевой порог при механическом давлении на кожу зависит от места раздражения.

Восприятие кожей температурных воздействий зависит от ее собственного состояния, в частности, от ее температуры. Нормальная температура кожи, адаптированная к внешней температуре, в обычных условиях среды составляет 32,5–33,5°С. Температура кожи ниже 0° и выше 51°С вызывает ощущение боли [76].

2.5 Кинестетический анализатор (проприорецепция)

У человека имеются три вида рецепторов, воспринимающих растяжение мышц при их расслаблении – «мускульные веретена», сокращение мышц – сухожильные клетки Гольджи и положение суставов – «суставное чувство». Эти виды рецепторов, объединенных названием «кинестетический анализатор» с вестибулярным анализатором, обеспечивают ощущения положения и движения тела и его частей.

2.6 Обонятельный анализатор

Обонятельный анализатор предназначен для восприятия различных запахов (их насчитывается до 400 наименований). Рецепторы этого анализатора расположены в слизистой оболочке носа. Условиями восприятия запаха являются: летучесть пахучего вещества (выделение его молекул в свободном виде), растворимость в воде и других средах. Чувствительность анализатора зависит от вида вещества, температуры, влажности, движения воздуха, концентрации и прочих факторов. Наименьшие пороги наблюдаются при температуре 25–З0°С.

2.7 Вкусовой анализатор

Вкусовой анализатор обеспечивает различение вкуса вещества, попадающего в полость рта. Основные вкусовые ощущения: кислое, соленое, горькое, сладкое. Рецепторы расположены на различных участках языка. Адаптация к вкусовому раздражителю пропорциональна его концентрации. Восстановление вкусовой чувствительности происходит через 10–15 мин [76].

2.8 Функциональная взаимосвязь анализаторов

Приведенные выше характеристики анализаторов определены в условиях, когда каждый анализатор рассматривается изолированно, вне связи с другими системами и функциями организма. В действительности все анализаторы объединены и взаимосвязаны в рамках центральной нервной системы человека, поэтому поступление сигнала или изменение функционального состояния отдельного анализатора или центральной нервной системы в целом приводит к изменению характеристик и других анализаторов.

Например, световая чувствительность зрительного анализатора может изменяться под влиянием целого ряда факторов: запах нашатырного спирта, вкус сладкого, слабый кислый и соленый вкус, обдувание кожи лица, холод, легкая мышечная работа, удобное сидячее положение человека ведут к повышению чувствительности периферического зрения. В то время как громкий звук, горький вкус, тепло, тяжелая мышечная работа, облучение кожи ультрафиолетовыми и рентгеновскими лучами, понижение атмосферного давления, голодание вызывают снижение чувствительности периферического зрения [76].

Чувствительность разных анализаторов изменяется под влиянием неблагоприятных факторов: низкие и высокие температуры, вибрации и перегрузки, невесомость, слишком интенсивный поток информации, ведущий к дефициту времени, утомление, стрессовое состояние – эти и другие факторы вызывают различные изменения характеристик анализаторов и могут способствовать возникновению иллюзий и ошибок со стороны пилота, что снижает уровень безопасности полета.

3 Классификация иллюзий

3.1 Определение оснований для классификации иллюзий

Проведенные исследования позволили выявить и описать около 200 иллюзий пространственного положения и движения в полете. Возникла необходимость разработки классификации этих иллюзий.

В данной работе определены следующие основания для классификации иллюзий: этапы полета, параметры полета, время суток и время года, режим полета (визуальный или приборный), профессия (пилоты, штурманы и т. д.), функциональные системы (анализаторы, органы чувств) для которых характерны те или иные иллюзии, типы иллюзий (индивидуальные или групповые), ответственность различных уровней переработки информации, вид метеоусловий и т. д. (см. таблицу З.1). Перечень подвидов по этой классификации приводится ниже.

Так, проведенный анализ показал, что иллюзии у пилотов могут возникать на следующих одиннадцати этапах полета:

– при движении летательного аппарата по аэродрому;

– на разбеге;

– на взлете;

– при наборе высоты;

– на маршруте;

– при снижении до высоты круга;

– при выполнении прямоугольного маршрута;

– при заходе на посадку;

– на выравнивании;

– на посадке;

– на висении (для вертолетов);

– при пробеге.

Пилотажно‐навигационный параметр – это часть летной ситуации, которая имеет единицы, диапазон и систему измерения, и используется пилотом для точной пространственной ориентации.

Составляющие параметра летной ситуации подробно описаны [1]. Параметр – это сложное, многоаспектное явление.

Традиционно положение и движение летательного аппарата в пространстве в основном характеризуется следующими пилотажно‐навигационными параметрами:

– крен;

– тангаж (кабрирование, пикирование);

– скорость;

– высота;

– вертикальная скорость подъема – снижения;

– скольжение;

– курс;

– дальность;

– разворот.

Естественно, этот перечень не исчерпывает всего объема пилотажно‐навигационных параметров, например, функционирования различных систем самолета. Однако предварительные исследования и анализ литературы показали, что иллюзии пространственного положения и движения возникают у пилотов наиболее часто при работе именно с перечисленными выше параметрами. Поэтому они использованы в нашей работе в качестве оснований для классификации.

Так, было установлено, что иллюзии возникают у летного состава в разное время суток и время года. Причем некоторые иллюзии возникают только в определенное время. Так, иллюзия звездного окружения (впечатление, что кругом звезды) может возникнуть у пилотов только в условиях ночного полета, а иллюзия сноса самолета во время метели (кажущийся снос самолета в противоположную сторону в метель, когда снежная масса относится ветром поперек ВПП) может возникнуть у пилота только зимой. Именно поэтому основаниями классификации иллюзий могут быть время суток и года.

Конец ознакомительного фрагмента.